login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A155164
Polynomial triangle sequence of coefficients: p(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}]. q(x,n)=(p(x,n)+x^n*p(1/x,n))/2
1
1, 2, 6, 6, 34, 52, 34, 315, 525, 525, 315, 3891, 7956, 6546, 7956, 3891, 58828, 153636, 120176, 120176, 153636, 58828, 1048580, 3405480, 3219420, 1950320, 3219420, 3405480, 1048580, 21523365, 84108555, 100695825, 53131455, 53131455
OFFSET
0,2
COMMENTS
Row sums are:A001813; {1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800}.
This polynomial set is a new Binomial transform approach to infinite sums.
By the row sum it reaches the {2^n,(n+1)!,2^n*n!,(2*n+1)!!,(2*n)!/n!,...} fifth level of Sierpinski-Pascal complexity.
LINKS
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
p(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];
q(x,n)=(p(x,n)+x^n*p(1/x,n))/2; t(n,m)=coefficients(q(x,n)).
EXAMPLE
{1},
{2},
{6, 6},
{34, 52, 34},
{315, 525, 525, 315},
{3891, 7956, 6546, 7956, 3891},
{58828, 153636, 120176, 120176, 153636, 58828},
{1048580, 3405480, 3219420, 1950320, 3219420, 3405480, 1048580},
{21523365, 84108555, 100695825, 53131455, 53131455, 100695825, 84108555, 21523365},
{500000005, 2289752440, 3390827500, 2109954760, 1062156190, 2109954760, 3390827500, 2289752440, 500000005},
{12968712306, 68202578598, 121311981780, 94003706412, 38734307304, 38734307304, 94003706412, 121311981780, 68202578598, 12968712306}
MATHEMATICA
Clear[p, x, n, m];
p[x_, n_] = -((x - 1)^(2*n + 1)/x^n)*Sum[( k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}]; Q Table[(FullSimplify[ExpandAll[p[x, n]]] + FullSimplify[ExpandAll[x^n*p[ 1/x, n]]])/2, {n, 0, 10}];
Table[(CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]])/2, {n, 0, 10}];
Flatten[%]
CROSSREFS
Cf. A001813.
Sequence in context: A069260 A056603 A019198 * A155948 A368393 A228955
KEYWORD
nonn,tabl,uned
AUTHOR
STATUS
approved