login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Polynomial triangle sequence of coefficients: p(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}]. q(x,n)=(p(x,n)+x^n*p(1/x,n))/2
1

%I #5 Jan 27 2019 18:05:06

%S 1,2,6,6,34,52,34,315,525,525,315,3891,7956,6546,7956,3891,58828,

%T 153636,120176,120176,153636,58828,1048580,3405480,3219420,1950320,

%U 3219420,3405480,1048580,21523365,84108555,100695825,53131455,53131455

%N Polynomial triangle sequence of coefficients: p(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}]. q(x,n)=(p(x,n)+x^n*p(1/x,n))/2

%C Row sums are:A001813; {1, 2, 12, 120, 1680, 30240, 665280, 17297280, 518918400, 17643225600, 670442572800}.

%C This polynomial set is a new Binomial transform approach to infinite sums.

%C By the row sum it reaches the {2^n,(n+1)!,2^n*n!,(2*n+1)!!,(2*n)!/n!,...} fifth level of Sierpinski-Pascal complexity.

%H Michael Z. Spivey and Laura L. Steil, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.

%F p(x,n)=-((x - 1)^(2*n + 1)/x^n)*Sum[(k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];

%F q(x,n)=(p(x,n)+x^n*p(1/x,n))/2; t(n,m)=coefficients(q(x,n)).

%e {1},

%e {2},

%e {6, 6},

%e {34, 52, 34},

%e {315, 525, 525, 315},

%e {3891, 7956, 6546, 7956, 3891},

%e {58828, 153636, 120176, 120176, 153636, 58828},

%e {1048580, 3405480, 3219420, 1950320, 3219420, 3405480, 1048580},

%e {21523365, 84108555, 100695825, 53131455, 53131455, 100695825, 84108555, 21523365},

%e {500000005, 2289752440, 3390827500, 2109954760, 1062156190, 2109954760, 3390827500, 2289752440, 500000005},

%e {12968712306, 68202578598, 121311981780, 94003706412, 38734307304, 38734307304, 94003706412, 121311981780, 68202578598, 12968712306}

%t Clear[p, x, n, m];

%t p[x_, n_] = -((x - 1)^(2*n + 1)/x^n)*Sum[( k + 1)^n*Binomial[k, n]*x^k, {k, 0, Infinity}];Q Table[(FullSimplify[ExpandAll[p[x, n]]] + FullSimplify[ExpandAll[x^n*p[ 1/x, n]]])/2, {n, 0, 10}];

%t Table[(CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x] + Reverse[ CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x]])/2, {n, 0, 10}];

%t Flatten[%]

%Y Cf. A001813.

%K nonn,tabl,uned

%O 0,2

%A _Roger L. Bagula_ and _Gary W. Adamson_, Jan 21 2009