

A155167


(L)sieve transform of A004767 = {3,7,11,15,...,4n1,...}.


8



1, 2, 3, 5, 7, 10, 14, 19, 26, 35, 47, 63, 85, 114, 153, 205, 274, 366, 489, 653, 871, 1162, 1550, 2067, 2757, 3677, 4903, 6538, 8718, 11625, 15501, 20669, 27559, 36746, 48995, 65327, 87103, 116138, 154851, 206469
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A152009 for the definition of the (L)sieve transform.
This appears to be the same sequence that is defined in Problem 193 of Popular Computing, Number 55 (see link).  N. J. A. Sloane, Apr 16 2015


LINKS

Table of n, a(n) for n=1..40.
Popular Computing (Calabasas, CA), Coding Fun: Rearranging All The Numbers, Annotated and scanned copy of pages PC552, PC553, and PC551(cover) of Vol. 5 (No. 55, Oct 1977).


FORMULA

All listed terms satisfy the recurrence a(n)=Floor[(4*a[[n1]]+3)/3], with a(1)=1.


MAPLE

# Maple program for Popular Computing Problem 193, which produces terms which appear to match this sequence, from N. J. A. Sloane, Apr 16 2015
with(LinearAlgebra): M:=1000; B:=300;
t1:=Array(1..M, 0); t2:=Array(1..M, 0); t3:=Array(1..M, 1);
for n from 1 to M do t1[n]:=n+2; od:
for n from 1 to B do
i:=t1[1];
if t3[i] = 1 then t3[i]:=n1; fi;
for j from 1 to i do t2[j]:=t1[j+1]; od:
t2[i+1]:=i;
for p from i+2 to M2 do t2[p]:=t1[p]; od;
for q from 1 to M2 do t1[q]:=t2[q]; od:
od:
[seq(t3[n], n=3..B)];


CROSSREFS

Cf. A004767, A006999, A061419, A152009.
Sequence in context: A105780 A001522 A054405 * A325858 A237269 A116634
Adjacent sequences: A155164 A155165 A155166 * A155168 A155169 A155170


KEYWORD

nonn


AUTHOR

John W. Layman, Jan 21 2009


STATUS

approved



