login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228955
Table: T(n,k) = n!*binomial(n+1,2*k).
2
1, 1, 1, 2, 6, 6, 36, 6, 24, 240, 120, 120, 1800, 1800, 120, 720, 15120, 25200, 5040, 5040, 141120, 352800, 141120, 5040, 40320, 1451520, 5080320, 3386880, 362880, 362880, 16329600, 76204800, 76204800, 16329600, 362880, 3628800, 199584000, 1197504000, 1676505600, 598752000, 39916800
OFFSET
0,4
COMMENTS
A companion table to A131980(n,k) = n!*binomial(n+1,2*k+1).
Let {P(n,x)}n>=0 be a polynomial sequence. Koutras has defined generalized Eulerian numbers associated with the sequence P(n,x) as the coefficients A(n,k) in the expansion of P(n,x) in a series of factorials of degree n, namely P(n,x) = sum {k = 0..n} A(n,k)* binomial(x+n-k,n). The choice P(n,x) = x^n produces the classical Eulerian numbers of A008292. Let now P(n,x) = x*(x+1)*...*(x+n-1) denote the n-th rising factorial polynomial. Then A131980 is the table of generalized Eulerian numbers associated with the polynomial sequence P(n,2*x) while the present table is the generalized Eulerian numbers associated with the polynomial sequence P(n,2*x+1).
LINKS
M. V. Koutras, Eulerian numbers associated with sequences of polynomials, The Fibonacci Quarterly, 32 (1994), 44-57.
FORMULA
T(n,k) = n!*binomial(n+1,2*k) for n,k >= 0.
Let P(n,x) = x*(x+1)*...*(x+n-1) denote the n-th rising factorial. Then
T(n,k) = sum(j=0..k, (-1)^(k-j)*binomial(n+1,k-j)*P(n,2*j+1) ) for n >= 1.
Recurrence equation: T(n+1,k) = (n+2*k+1)*T(n,k) + (n-2*k+3)*T(n,k-1).
E.g.f.: ( 1 - u*(1 - x) )/( (u - 1)^2 - u^2*x ) = 1 + (1 + x)*u + (2 + 6*x)*u^2/2! + (6 + 36*x + 6*x^2)*u^3/3! + ....
The n-th row polynomial R(n,t) satisfies R(n,t)/(1 - t)^(n+1) = sum(j>=0, P(n,2*j+1)*t^j ). Some examples are given below.
Row sums 2^n*n! = A000165.
EXAMPLE
Table begins
n\k| 0 1 2 3 4
= = = = = = = = = = = = = = = = = = = = =
0 | 1
1 | 1 1
2 | 2 6
3 | 6 36 6
4 | 24 240 120
5 | 120 1800 1800 120
6 | 720 15120 25200 5040
7 | 5040 141120 352800 141120 5040
8 | 40320 1451520 5080320 3386880 362880
...
Row 3: (6 + 36*t + 6*t^2)/(1 - t)^4 = 1*2*3 + 3*4*5*t + 5*6*7*t^2 + ....
Row 4: (24 + 240*t + 120*t^2)/(1 - t)^5 = 1*2*3*4 + 3*4*5*6*t + 5*6*7*8*t^2 + ....
MAPLE
for n from 0 to 10 do
seq(n!*binomial(n+1, 2*k), k = 0..floor((n+1)/2))
end do;
MATHEMATICA
Flatten[Table[n!*Binomial[n+1, 2k], {n, 0, 10}, {k, 0, Floor[(n+1)/2]}]](* Harvey P. Dale, Nov 22 2018 *)
CROSSREFS
Cf. A000165 (row sums), A131980.
Sequence in context: A155164 A155948 A368393 * A328584 A226707 A097504
KEYWORD
nonn,easy,tabf
AUTHOR
Peter Bala, Sep 09 2013
STATUS
approved