login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A228954 Bisection of A195240(n). 0
1, 7, 11, 7, 19, 337, 5, -1681, 22133, -87223, 427291, -118181363, 4276553, -11874730297, 4307920641583, -3854660520481, 1288843929185, -13157635776526258889, 1464996956920781, -130541359248224557643 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The first bisection is b(n) = 0, 1, 8, 10, 8, 14, 1028, -2, 1936, -21734,... .

a(n) and b(n) are twice linked to Bernoulli numbers (A027641(n+4) or A164555(n+4))/A027642(n+4).

LINKS

Table of n, a(n) for n=0..19.

FORMULA

A195240(2n+1).

a(n+1) = b(n+2) + A000367(n+2).

a(n+1) = A001897(n+2) - b(n+2).

2*a(n+1) = A000367(n+2) + A001897(n+2).

MATHEMATICA

evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 42}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k + 1]], {k, 0, n}], {n, 0, Length[evb] - 3}]; A195240 = Differences[ievb, 2] // Numerator; Partition[A195240, 2][[All, 2]]

(* or *)

A000367[n_] := BernoulliB[2*n] // Numerator; A001897[n_] := -2*(2^(2*n - 1) - 1)*BernoulliB[2*n] // Denominator; a[0] = 1; a[n_] := (A000367[n + 1] + A001897[n + 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)

CROSSREFS

Sequence in context: A097152 A212769 A269485 * A283651 A133891 A071631

Adjacent sequences:  A228951 A228952 A228953 * A228955 A228956 A228957

KEYWORD

sign

AUTHOR

Paul Curtz, Sep 09 2013

EXTENSIONS

More terms from Jean-François Alcover, Sep 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 01:21 EDT 2020. Contains 334808 sequences. (Running on oeis4.)