login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228954
Bisection of A195240(n).
0
1, 7, 11, 7, 19, 337, 5, -1681, 22133, -87223, 427291, -118181363, 4276553, -11874730297, 4307920641583, -3854660520481, 1288843929185, -13157635776526258889, 1464996956920781, -130541359248224557643
OFFSET
0,2
COMMENTS
The first bisection is b(n) = 0, 1, 8, 10, 8, 14, 1028, -2, 1936, -21734,... .
a(n) and b(n) are twice linked to Bernoulli numbers (A027641(n+4) or A164555(n+4))/A027642(n+4).
FORMULA
A195240(2n+1).
a(n+1) = b(n+2) + A000367(n+2).
a(n+1) = A001897(n+2) - b(n+2).
2*a(n+1) = A000367(n+2) + A001897(n+2).
MATHEMATICA
evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 42}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k + 1]], {k, 0, n}], {n, 0, Length[evb] - 3}]; A195240 = Differences[ievb, 2] // Numerator; Partition[A195240, 2][[All, 2]]
(* or *)
A000367[n_] := BernoulliB[2*n] // Numerator; A001897[n_] := -2*(2^(2*n - 1) - 1)*BernoulliB[2*n] // Denominator; a[0] = 1; a[n_] := (A000367[n + 1] + A001897[n + 1])/2; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)
CROSSREFS
Sequence in context: A097152 A212769 A269485 * A283651 A358721 A133891
KEYWORD
sign
AUTHOR
Paul Curtz, Sep 09 2013
EXTENSIONS
More terms from Jean-François Alcover, Sep 09 2013
STATUS
approved