login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233581
a(n) = 2*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 1, a(1) = 0, a(2) = -1.
1
1, 0, -1, -1, 1, 4, 4, -3, -14, -15, 9, 49, 56, -26, -171, -208, 71, 595, 769, -176, -2064, -2831, 354, 7137, 10381, -295, -24596, -37926, -2359, 84464, 138079, 20407, -288959, -501060, -114836, 984549, 1812546, 556609, -3339871, -6537023, -2497824, 11275550
OFFSET
0,6
FORMULA
G.f.: (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3).
a(n) = A052921(-n). a(n)^2 - a(n-1)*a(n+1) = A034943(n).
a(n) = A127896(n) -2*A127896(n-1) + 2*A127896(n-2). - R. J. Mathar, Sep 24 2021
EXAMPLE
G.f. = 1 - x^2 - x^3 + x^4 + 4*x^5 + 4*x^6 - 3*x^7 - 14*x^8 - 15*x^9 + ...
MATHEMATICA
CoefficientList[Series[(1-2*x+2*x^2)/(1-2*x+3*x^2-x^3), {x, 0, 50}], x] (* or *) LinearRecurrence[{2, -3, 1}, {1, 0, -1}, 50] (* G. C. Greubel, Aug 08 2018 *)
PROG
(PARI) {a(n) = if( n<0, polcoeff( (1 - x) / (1 - 3*x + 2*x^2 - x^3) + x * O(x^-n), -n), polcoeff( (1 - 2*x + 2*x^2) / (1 - 2*x + 3*x^2 - x^3) + x * O(x^n), n))}
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+2*x^2)/(1-2*x+3*x^2-x^3))); // G. C. Greubel, Aug 08 2018
CROSSREFS
Sequence in context: A023530 A337365 A345294 * A193628 A306506 A241056
KEYWORD
sign
AUTHOR
Michael Somos, Dec 14 2013
STATUS
approved