login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of array T as in A054144.
2

%I #13 Sep 08 2022 08:45:00

%S 0,2,12,58,256,1072,4336,17112,66304,253280,956608,3579680,13292544,

%T 49039360,179912448,656874368,2388205568,8650598912,31231020032,

%U 112419973632,403596148736,1445463642112,5165581660160,18423238924288

%N Row sums of array T as in A054144.

%H G. C. Greubel, <a href="/A054145/b054145.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-20,16,-4).

%F G.f.: 2*x*(1 - x)^2/(1 - 4*x + 2*x^2)^2.

%F a(n) = ((n-2)*((2 + sqrt(2))^n + (2 - sqrt(2))^n) + sqrt(2)*((2 + sqrt(2))^n - (2 - sqrt(2))^n))/8. - _G. C. Greubel_, Jul 31 2019

%t LinearRecurrence[{8,-20,16,-4}, {0,2,12,58}, 30] (* _G. C. Greubel_, Jul 31 2019 *)

%o (PARI) my(x='x+O('x^30)); concat([0], Vec(2*x*(1-x)^2/(1-4*x+2*x^2)^2)) \\ _G. C. Greubel_, Jul 31 2019

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( 2*x*(1-x)^2/(1-4*x+2*x^2)^2 )); // _G. C. Greubel_, Jul 31 2019

%o (Sage) (2*x*(1-x)^2/(1-4*x+2*x^2)^2).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Jul 31 2019

%o (GAP) a:=[0,2,12,58];; for n in [5..30] do a[n]:=8*a[n-1]-20*a[n-2] +16*a[n-3]-4*a[n-4]; od; a; # _G. C. Greubel_, Jul 31 2019

%K nonn

%O 0,2

%A _Clark Kimberling_, Mar 18 2000