The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A284816 Sum of entries in the first cycles of all permutations of [n]. 5
 1, 4, 21, 132, 960, 7920, 73080, 745920, 8346240, 101606400, 1337212800, 18920563200, 286442956800, 4620449433600, 79114299264000, 1433211107328000, 27387931963392000, 550604138692608000, 11617107089043456000, 256671161862635520000, 5926549291918295040000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Each cycle is written with the smallest element first and cycles are arranged in increasing order of their first elements. LINKS Alois P. Heinz, Table of n, a(n) for n = 1..448 Wikipedia, Permutation FORMULA a(n) = n!*(n*(n+1)-(n-1)*(n+2)/2)/2. E.g.f.: -x*(x^2-2*x+2)/(2*(x-1)^3). a(n) = (n^2+n+2)*n*a(n-1)/(n^2-n+2) for n>1, a(n) = n for n<2. EXAMPLE a(3) = 21 because the sum of the entries in the first cycles of all permutations of [3] ((123), (132), (12)(3), (13)(2), (1)(23), (1)(2)(3)) is 6+6+3+4+1+1 = 21. MAPLE a:= n-> n!*(n*(n+1)-(n-1)*(n+2)/2)/2: seq(a(n), n=1..25); # second Maple program: a:= proc(n) option remember; `if`(n<2, n,        (n^2+n+2)*n*a(n-1)/(n^2-n+2))     end: seq(a(n), n=1..25); CROSSREFS Cf. A180119, A185105, A285363, A285382. Column k=1 of A285439. Sequence in context: A131965 A332851 A303563 * A226067 A104982 A306335 Adjacent sequences:  A284813 A284814 A284815 * A284817 A284818 A284819 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 15 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 22:16 EDT 2021. Contains 343780 sequences. (Running on oeis4.)