login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A306335
Expansion of e.g.f. BesselI(0,2*log(1 + x)) + BesselI(1,2*log(1 + x)).
2
1, 1, 1, -1, 4, -21, 133, -981, 8244, -77694, 811194, -9292075, 115843000, -1561272571, 22618147199, -350481556959, 5784147674772, -101284047800632, 1875504207906184, -36616289396963678, 751702523788615816, -16187581390548113842, 364861626149143519378, -8590429045711448354359
OFFSET
0,5
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k)*A001405(k).
MAPLE
E:= BesselI(0, 2*log(1 + x)) + BesselI(1, 2*log(1 + x)):
S:= series(E, x, 51):
seq(coeff(S, x, j)*j!, j=0..50); # Robert Israel, Feb 10 2019
MATHEMATICA
nmax = 23; CoefficientList[Series[BesselI[0, 2 Log[1 + x]] + BesselI[1, 2 Log[1 + x]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 23}]
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*binomial(k, k\2)); \\ Michel Marcus, Feb 09 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 08 2019
STATUS
approved