OFFSET
0,7
COMMENTS
1, 1, 1, 0, 1, -5, 29, -196, ... is the Stirling1 transform of the Motzkin numbers A001006. - Philippe Deléham, May 27 2015
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..200
FORMULA
E.g.f.: hypergeom([1/2], [2], 4*log(1+x)) = (1+x)^2*(BesselI(0, 2*log(1+x))-BesselI(1, 2*log(1+x))).
Let C(m) be the m-th Catalan number, A000108(m). Let S(m, n) = an unsigned Stirling number of the first kind. Then a(m) = sum{k=0 to m} S(m, k) C(k) (-1)^(k+m). - Leroy Quet, Jan 23 2004
E.g.f. f(x) satisfies f(x) = 1 + integral{0 to x} f(y) f((x-y)/(1+y))/(1+y) dy. - Leroy Quet, Jan 25 2004
For n > 1, a(n) = (A201950(n+1) - (3*n-2)*A201950(n) + n*(3*n-7)*A201950(n-1) - (n-4)*(n-1)*n*A201950(n-2)) * (-1)^n/2. - Vaclav Kotesovec, May 04 2024
MATHEMATICA
Table[Sum[StirlingS1[n, k] * CatalanNumber[k], {k, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Aug 04 2021 *)
PROG
(PARI) a(n)={sum(k=0, n, stirling(n, k, 1) * binomial(2*k, k) / (k+1))} \\ Andrew Howroyd, Jan 27 2020
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Vladeta Jovovic, Sep 12 2003
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Jan 27 2020
STATUS
approved