login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086672 Stirling1 transform of Catalan numbers: Sum_{k=0..n} Stirling1(n,k)*binomial(2*k,k)/(k+1). 6
1, 1, 1, 1, 0, 1, -5, 29, -196, 1518, -13266, 129163, -1386572, 16270671, -207195495, 2845705719, -41930575740, 659781404944, -11041824881696, 195839234324062, -3669384701403344, 72423881548363354, -1501924519315744146, 32649768696532126439, -742432111781693213350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

1, 1, 1, 0, 1, -5, 29, -196, ... is the Stirling1 transform of the Motzkin numbers A001006. - Philippe Deléham, May 27 2015

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

FORMULA

E.g.f.: hypergeom([1/2], [2], 4*log(1+x)) = (1+x)^2*(BesselI(0, 2*log(1+x))-BesselI(1, 2*log(1+x))).

Let C(m) be the m-th Catalan number, A000108(m). Let S(m, n) = an unsigned Stirling number of the first kind. Then a(m) = sum{k=0 to m} S(m, k) C(k) (-1)^(k+m). - Leroy Quet, Jan 23 2004

E.g.f. f(x) satisfies f(x) = 1 + integral{0 to x} f(y) f((x-y)/(1+y))/(1+y) dy. - Leroy Quet, Jan 25 2004

a(n) = Sum_{k = 0..n} A048994(n, k) * A000108(k). - Philippe Deléham, May 27 2015

a(n+1) = Sum_{k = 0..n} A048994(n,k) * A001006(k). - Philippe Deléham, May 27 2015

PROG

(PARI) a(n)={sum(k=0, n, stirling(n, k, 1) * binomial(2*k, k) / (k+1))} \\ Andrew Howroyd, Jan 27 2020

CROSSREFS

Cf. A000108, A001006, A008275, A048994, A064856.

Sequence in context: A225030 A188143 A095000 * A324962 A306932 A201856

Adjacent sequences:  A086669 A086670 A086671 * A086673 A086674 A086675

KEYWORD

easy,sign

AUTHOR

Vladeta Jovovic, Sep 12 2003

EXTENSIONS

Terms a(21) and beyond from Andrew Howroyd, Jan 27 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)