login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180119
a(n) = (n+2)! * Sum_{k = 1..n} 1/((k+1)*(k+2)).
9
0, 1, 6, 36, 240, 1800, 15120, 141120, 1451520, 16329600, 199584000, 2634508800, 37362124800, 566658892800, 9153720576000, 156920924160000, 2845499424768000, 54420176498688000, 1094805903679488000, 23112569077678080000, 510909421717094400000, 11802007641664880640000
OFFSET
0,3
COMMENTS
In general, a sequence of the form (n+x+2)! * Sum_{k = 1..n} (k+x)!/(k+x+2)! will have a closed form of (n+x+2)!*n/((x+2)*(n+2+x)).
0 followed by A001286. - R. J. Mathar, Aug 13 2010
Sum of the entries in all cycles of all permutations of [n]. - Alois P. Heinz, Apr 19 2017
LINKS
A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 209. Book's website
H. W. Gould, ed. J. Quaintance, Combinatorial Identities, May 2010 (section 10, p.45).
FORMULA
a(n) = n*(n+1)!/2. [Simplified by M. F. Hasler, Apr 10 2018]
a(n) = (n+1)! * Sum_{k = 2..n} (1/(k^2+k)), with offset 1. - Gary Detlefs, Sep 15 2011
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*k^(n+1) = (1/(2*x + 1))*Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(x*n + k)^(n+1), for arbitrary x != -1/2. - Peter Bala, Feb 19 2017
From Alois P. Heinz, Apr 19 2017: (Start)
a(n) = A000142(n) * A000217(n) = Sum_{k=1..n} A285439(n,k).
E.g.f.: x/(1-x)^3. (End)
a(n) = A001286(n+1) for n > 0. - M. F. Hasler, Apr 10 2018
MAPLE
a:= n-> n*(n+2)!/(2*(n+2)): seq(a(n), n=0..20);
MATHEMATICA
Table[n (n + 2)! / (2 (n + 2)), {n, 0, 30}] (* Vincenzo Librandi, Feb 20 2017 *)
PROG
(PARI) a(n) = (n+2)! * sum(k=1, n, 1/((k+1)*(k+2))); \\ Michel Marcus, Jan 10 2015
(PARI) apply( A180119(n)=(n+1)!\2*n, [0..20]) \\ M. F. Hasler, Apr 10 2018
(Magma) [n*Factorial(n+2)/(2*(n+2)): n in [0..25]]; // Vincenzo Librandi, Feb 20 2017
KEYWORD
nonn,easy
AUTHOR
Gary Detlefs, Aug 10 2010
STATUS
approved