login
A181964
Sum of the sizes of normalizers of all the cyclic subgroups of Alternating Group of order n.
0
1, 1, 6, 36, 240, 2160, 20160, 241920, 2903040, 39916800, 578793600, 9580032000, 161902540800, 3007651046400, 58845346560000, 1234444603392000, 26854400821248000, 624231436308480000, 15083992450695168000, 385614968295997440000
OFFSET
1,3
COMMENTS
For each cyclic subgroup of the Alternate group on n symbols, add the size of its normalizer (permutations leaving the subgroup invariant by conjugation).
a(7) is remarquable because it is equal to the size of Alt(8).
FORMULA
a(n) = n!/2 * A046682(n).
EXAMPLE
Decomposing by number of cyclic subgroups * size of normalizer of subgroups
a(5) = 1*60 + 4*15 + 6*10 + 0*60 + 10*6 = 240.
a(6) = 1*360 + 8*45 + (18*20+18*20) + 8*45 + 10*36 = 2160.
CROSSREFS
Sequence in context: A153824 A001286 A180119 * A354457 A199422 A049431
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Apr 04 2012
STATUS
approved