OFFSET
0,3
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
Row n has 1 + floor((n+1)/3) terms.
Row sums yield A002212.
T(n,0) = A128729(n).
Sum_{k>=0} k*T(n,k) = A128730(n).
Apparently, T(3k-1,k) = binomial(3k-1,k)/(3k-1) = A006013(k-1).
LINKS
E. Deutsch, E. Munarini, and S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
Helmut Prodinger, Skew Dyck paths without up-down-left, arXiv:2203.10516 [math.CO], 2022.
Yuxuan Zhang and Yan Zhuang, A subfamily of skew Dyck paths related to k-ary trees, arXiv:2306.15778 [math.CO], 2023.
FORMULA
G.f.: G = G(t,z) satisfies z^2*G^3 - z(2-z)G^2 + (1-z^2)G - 1 + z + z^2 - tz^2 = 0.
EXAMPLE
T(3,1)=4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL.
Triangle starts:
1;
1;
2, 1;
6, 4;
20, 16;
71, 64, 2;
262, 261, 20;
MAPLE
eq:=z^2*G^3-z*(2-z)*G^2+(1-z^2)*G-1+z+z^2-t*z^2=0: G:=RootOf(eq, G): Gser:=simplify(series(G, z=0, 17)): for n from 0 to 14 do P[n]:=sort(coeff(Gser, z, n)) od: for n from 0 to 14 do seq(coeff(P[n], t, j), j=0..floor((n+1)/3)) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved