login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128726
Number of LL's in all skew Dyck paths of semilength n.
2
0, 0, 0, 1, 7, 38, 192, 946, 4616, 22440, 108964, 529133, 2571079, 12504038, 60872038, 296641049, 1447054867, 7065841496, 34534088328, 168933369259, 827073303197, 4052396628306, 19870029768028, 97495408609784
OFFSET
0,5
COMMENTS
A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
FORMULA
a(n) = Sum_{k=0..n-2} k*A128724(n,k).
G.f.: z(1-g+zg^2)/[(1-z-zg)(1+z-3zg)], where g=1+zg^2+z(g-1)=[1-z-sqrt(1-6z+5z^2)]/(2z).
a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: +2*n*(n-3)^2*a(n) +(-13*n^3+84*n^2-167*n+100)*a(n-1) +(n-2)*(16*n^2-77*n+85)*a(n-2) -5*(n-3)*(n-2)^2*a(n-3)=0. - R. J. Mathar, Jun 17 2016
EXAMPLE
a(4)=7 because we have UDUUUDLL, UUUUDLLD, UUDUUDLL, UUUDUDLL, UUUUDDLL and UUUUDLLL (last path has two LL's).
MAPLE
g:=(1-z-sqrt(1-6*z+5*z^2))/(2*z): G:=z*(g-1-z*g^2)/((1-z-z*g)*(1+z-3*z*g)): Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=0..27);
MATHEMATICA
CoefficientList[Series[x*((1-x-Sqrt[1-6*x+5*x^2])/(2*x)-1-x*((1-x-Sqrt[1-6*x+5*x^2])/(2*x))^2)/((1-x-x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x))*(1+x-3*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
CROSSREFS
Cf. A128724.
Sequence in context: A037696 A026895 A037605 * A346395 A055146 A014827
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Mar 31 2007
STATUS
approved