login
A037605
Base 5 digits are, in order, the first n terms of the periodic sequence with initial period 1,2,3.
0
1, 7, 38, 191, 957, 4788, 23941, 119707, 598538, 2992691, 14963457, 74817288, 374086441, 1870432207, 9352161038, 46760805191, 233804025957, 1169020129788, 5845100648941, 29225503244707, 146127516223538, 730637581117691
OFFSET
1,2
FORMULA
G.f.: x*(1+2*x+3*x^2) / ( (x-1)*(5*x-1)*(1+x+x^2) ). - R. J. Mathar, Apr 27 2015
A007091(a(n)) = A037610(n). - R. J. Mathar, Apr 27 2015
MATHEMATICA
Table[FromDigits[PadRight[{}, n, {1, 2, 3}], 5], {n, 30}] (* or *) LinearRecurrence[{5, 0, 1, -5}, {1, 7, 38, 191}, 30] (* Harvey P. Dale, Oct 16 2024 *)
PROG
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -5, 1, 0, 5]^(n-1)*[1; 7; 38; 191])[1, 1] \\ Charles R Greathouse IV, Feb 13 2017
CROSSREFS
Sequence in context: A217340 A037696 A026895 * A128726 A346395 A055146
KEYWORD
nonn,base,easy
STATUS
approved