Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 20 2017 03:41:46
%S 0,0,0,1,7,38,192,946,4616,22440,108964,529133,2571079,12504038,
%T 60872038,296641049,1447054867,7065841496,34534088328,168933369259,
%U 827073303197,4052396628306,19870029768028,97495408609784
%N Number of LL's in all skew Dyck paths of semilength n.
%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
%H G. C. Greubel, <a href="/A128726/b128726.txt">Table of n, a(n) for n = 0..1000</a>
%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F a(n) = Sum_{k=0..n-2} k*A128724(n,k).
%F G.f.: z(1-g+zg^2)/[(1-z-zg)(1+z-3zg)], where g=1+zg^2+z(g-1)=[1-z-sqrt(1-6z+5z^2)]/(2z).
%F a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F Conjecture: +2*n*(n-3)^2*a(n) +(-13*n^3+84*n^2-167*n+100)*a(n-1) +(n-2)*(16*n^2-77*n+85)*a(n-2) -5*(n-3)*(n-2)^2*a(n-3)=0. - _R. J. Mathar_, Jun 17 2016
%e a(4)=7 because we have UDUUUDLL, UUUUDLLD, UUDUUDLL, UUUDUDLL, UUUUDDLL and UUUUDLLL (last path has two LL's).
%p g:=(1-z-sqrt(1-6*z+5*z^2))/(2*z): G:=z*(g-1-z*g^2)/((1-z-z*g)*(1+z-3*z*g)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..27);
%t CoefficientList[Series[x*((1-x-Sqrt[1-6*x+5*x^2])/(2*x)-1-x*((1-x-Sqrt[1-6*x+5*x^2])/(2*x))^2)/((1-x-x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x))*(1+x-3*x*(1-x-Sqrt[1-6*x+5*x^2])/(2*x))), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%Y Cf. A128724.
%K nonn
%O 0,5
%A _Emeric Deutsch_, Mar 31 2007