Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 20 2024 05:43:09
%S 0,0,1,4,16,68,301,1366,6301,29400,138355,655424,3121438,14930540,
%T 71675839,345148892,1666432816,8064278288,39103576699,189949958332,
%U 924163714216,4502711570988,21966152501239,107284324830302
%N Number of UDL's in all skew Dyck paths of semilength n.
%C A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of steps in it.
%H G. C. Greubel, <a href="/A128730/b128730.txt">Table of n, a(n) for n = 0..1000</a>
%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203
%F a(n) = Sum_{k>=0} k*A128728(n,k).
%F G.f.: 2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)).
%F a(n) ~ 5^(n-1/2)/(6*sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 20 2014
%F D-finite with recurrence: +2*(n-1)*(3*n-8)*a(n) +(-39*n^2+161*n-148)*a(n-1) +(48*n^2-215*n+220)*a(n-2) -5*(3*n-5)*(n-3)*a(n-3)=0. - _R. J. Mathar_, Jun 17 2016
%F For n >= 2, a(n) = Sum_{k=1..n-1} binomial(n,k)*A014300(k). - _Jianing Song_, Apr 20 2019
%e a(3) = 4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDLL (the other six skew Dyck paths of semilength 3 are the five Dyck paths and UUUDDL).
%p G:=2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)): Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=0..26);
%t CoefficientList[Series[2*x^2/(1-6*x+5*x^2+(1+x)*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 20 2014 *)
%o (PARI) z='z+O('z^50); concat([0,0], Vec(2*z^2/(1-6*z+5*z^2+(1+z)*sqrt(1-6*z+5*z^2)))) \\ _G. C. Greubel_, Mar 19 2017
%Y Cf. A128728, A014300.
%K nonn
%O 0,4
%A _Emeric Deutsch_, Mar 31 2007