login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129777
Number of freely-braided hexagon-avoiding permutations in S_n; the freely-braided hexagon-avoiding permutations are those that avoid 3421, 4231, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
0
1, 2, 6, 20, 71, 260, 971, 3670, 13968, 53369, 204352, 783408, 3005284, 11533014, 44267854, 169935041, 652385639, 2504613713, 9615798516, 36917689075, 141737959416, 544175811783, 2089262741393, 8021347093432, 30796530585417, 118237818141689, 453953210838465
OFFSET
1,2
COMMENTS
If w is freely-braided and hexagon-avoiding, there are simple explicit formulas for all the Kazhdan-Lusztig polynomials P_{x,w}.
REFERENCES
Jozsef Losonczy, Maximally clustered elements and Schubert varieties, Ann. Comb. 11 (2007), no. 2, 195-212.
FORMULA
G.f.: (-x^7-2x^6+2x^5+x^4-3x^3+4x^2-x) / (x^7-x^6-8x^5+x^4+3x^3-9x^2+6x-1).
EXAMPLE
a(8)=3670 because there are 3670 permutations of size 8 that avoid 3421, 4231, 4312, 4321, 46718235, 46781235, 56718234 and 56781234.
MATHEMATICA
LinearRecurrence[{6, -9, 3, 1, -8, -1, 1}, {1, 2, 6, 20, 71, 260, 971}, 27] (* Jean-François Alcover, Feb 02 2019 *)
PROG
(PARI) lista(nt) = { my(x = 'x + 'x*O('x^nt) ); P = (-x^7-2*x^6+2*x^5+x^4-3*x^3+4*x^2-x) / (x^7-x^6-8*x^5+x^4+3*x^3-9*x^2+6*x-1); print(Vec(P)); } \\ Michel Marcus, Mar 17 2013
CROSSREFS
Sequence in context: A376792 A145138 A000707 * A108600 A274484 A128729
KEYWORD
nonn
AUTHOR
Brant Jones (brant(AT)math.washington.edu), May 17 2007
EXTENSIONS
More terms from Michel Marcus, Mar 17 2013
STATUS
approved