login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135072
Minimal values of m associated with A135061.
2
1, 3, 4, 6, 9, 13, 15, 19, 23, 28, 36, 37, 44, 50, 52, 57, 63, 73, 78, 87, 90, 96, 104, 109, 115, 123, 133, 139, 147, 157, 162, 169, 178, 189, 195, 202, 212, 224, 230, 251, 248, 260, 278, 284, 294, 310, 309, 316, 325, 337, 351, 371, 376, 385, 399, 401, 419, 427, 437, 451, 469, 472, 480, 490, 503, 519
OFFSET
1,2
COMMENTS
a(n) is the least m > 0 such that floor(n^3/m) + m = A135061(n). - Robert Israel, Mar 06 2017
LINKS
FORMULA
If t = floor(2*n^(3/2))+1, then a(n) = 1 + floor((t-sqrt(t^2-4*n^3))/2). - Robert Israel, Mar 06 2017
MAPLE
f:= proc(n) local t; t:= floor(2*n^(3/2))+1; 1 + floor((t-sqrt(t^2-4*n^3))/2) end proc:
map(f, [$1..100]); # Robert Israel, Mar 06 2017
MATHEMATICA
a[n_] := With[{t = Floor[2n^(3/2)]+1}, 1 + Floor[(t-Sqrt[t^2-4n^3])/2]];
Array[a, 100] (* Jean-François Alcover, Jul 23 2020, after Maple *)
PROG
(PARI) a(n) = {local( minsum=0, cursum =0, minm=0, lastminsum=0); minsum = n^3 + 1; lastminsum= n^3 + 1; minm =1; for(m=1, n^3, cursum = floor(n^3/m + m); lastminsum = minsum; if(cursum < minsum, minsum = cursum); if(cursum < lastminsum, minm=m); ); minm; }
CROSSREFS
Cf. A135061.
Sequence in context: A096846 A140570 A285303 * A375198 A032720 A289117
KEYWORD
nonn
AUTHOR
Alexander R. Povolotsky, Feb 11 2008, Feb 15 2008
EXTENSIONS
Corrected and more terms added by Robert Israel, Mar 06 2017
STATUS
approved