login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135069
a(n) = [x^(2^n+n-1)] (x + x^2 + x^4 + x^8 + ... + x^(2^n))^n / n for n>=1.
4
1, 1, 2, 4, 18, 106, 816, 4292, 59698, 594178, 9066286, 87498566, 1784642080, 20988667064, 380829128200, 4301687654136, 167344151387170, 2948286694377154, 81332961594822202, 1301097749397343978, 48612398553534689114, 904790963165201870170, 26316129785192975106006, 464241023562098660374014, 24858620479726716329900336, 556565016155501619684118816, 20303230470838234228146518916, 424323532462258172880428842252
OFFSET
1,3
FORMULA
a(n) = A135068(n)/n for n>=1.
MATHEMATICA
f[x_, n_] := (1/n)*(Sum[x^(2^k), {k, 0, n}])^n; Table[Coefficient[f[x, n], x^(2^n + n - 1)] , {n, 1, 10}] (* G. C. Greubel, Sep 22 2016 *)
PROG
(PARI) {a(n)=if(n<1, 0, polcoeff(sum(j=0, n, x^(2^j)+O(x^(2^n+n)))^n, 2^n+n-1)/n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 17 2007
EXTENSIONS
a(15)-a(19) from Alois P. Heinz, Apr 29 2009
a(20)-a(22) from Max Alekseyev, Dec 03 2010
a(23)-a(28) from Max Alekseyev, Aug 31 2024
STATUS
approved