

A135067


Palindromic cubes p^3, where p is a prime.


1




OFFSET

1,1


COMMENTS

Corresponding primes p such that a(n) = p^3 are listed in A135066 = {2, 7, 11, 101, ...} = Primes p such that p^3 is a palindrome. PrimePi[ a(n)^(1/3) ] = {1, 4, 5, 26, ...}.
No further terms up to the 100,000th prime.  Harvey P. Dale, Jan 26 2021


LINKS

Table of n, a(n) for n=1..4.
P. De Geest, Palindromic Cubes


FORMULA

a(n) = A135066(n)^3.


EXAMPLE

a(3) = 1331 because 11^3 = 1331 is a palindrome and 11 is a prime.


MATHEMATICA

Do[ p = Prime[n]; f = p^3; If[ f == FromDigits[ Reverse[ IntegerDigits[ f ] ] ], Print[ {n, p, f} ]], {n, 1, 200000} ]
Select[Prime[Range[200]]^3, PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 26 2021 *)


CROSSREFS

Cf. A002780 = Cube is a palindrome. Cf. A069748 = Numbers n such that n and n^3 are both palindromes. Cf. A002781 = Palindromic cubes. Cf. A135066 = Primes p such that p^3 is a palindrome.
Sequence in context: A214511 A117082 A061458 * A002781 A016875 A046244
Adjacent sequences: A135064 A135065 A135066 * A135068 A135069 A135070


KEYWORD

more,nonn,base


AUTHOR

Alexander Adamchuk, Nov 16 2007


STATUS

approved



