login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135065
A127733 * A007318 as infinite lower triangular matrices.
1
1, 4, 4, 9, 18, 9, 16, 48, 48, 16, 25, 100, 150, 100, 25, 36, 180, 360, 360, 180, 36, 49, 294, 735, 980, 735, 294, 49, 64, 448, 1344, 2240, 2240, 1344, 448, 64, 81, 648, 2268, 4536, 5670, 4536, 2268, 648, 81, 100, 900, 3600, 8400, 12600, 12600, 8400, 3600
OFFSET
0,2
COMMENTS
A135065 * [1/1, 1/2, 1/3, ...] = A066524: (1, 6, 21, 60, 155, ...).
Triangle T(n,k), 0 <= k <= n, read by rows, given by (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 27 2011
LINKS
Mircea Merca, A Special Case of the Generalized Girard-Waring Formula, J. Integer Sequences, Vol. 15 (2012), Article 12.5.7.
FORMULA
T(n,k) = binomial(n,k)*(n+1)^2 = A007318(n,k)*A000290(n+1). - Philippe Deléham, Oct 27 2011
T(n-1,k-1) = Sum_{i=-k..k} (-1)^i*(k^2-i^2)*binomial(n,k+i)*binomial(n,k-i). - Mircea Merca, Apr 05 2012
G.f.: (-1 - x - x*y)/(x + x*y - 1)^3. - R. J. Mathar, Aug 12 2015
EXAMPLE
First few rows of the triangle:
1;
4, 4;
9, 18, 9;
16, 48, 48, 16;
25, 100, 150, 100, 25;
36, 180, 360, 360, 180, 36;
49, 294, 735, 980, 735, 294, 49;
MAPLE
with(combstruct):for n from 0 to 11 do seq(n*m*count(Combination(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Apr 09 2008
MATHEMATICA
Flatten[Table[Binomial[n, k](n+1)^2, {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jul 12 2013 *)
CROSSREFS
Cf. A000290, A127733, A066524, A014477 (row sums), A084938.
Sequence in context: A339427 A319646 A214826 * A067553 A112683 A192030
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Nov 16 2007
EXTENSIONS
Corrected by Zerinvary Lajos, Apr 09 2008
STATUS
approved