The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A067553 Sum of products of terms in all partitions of n into odd parts. 14
 1, 1, 1, 4, 4, 9, 18, 25, 40, 76, 122, 178, 321, 472, 734, 1303, 1874, 2852, 4782, 6984, 10808, 17552, 25461, 38512, 61586, 90894, 135437, 213260, 312180, 463340, 728806, 1057468, 1562810, 2422394, 3511962, 5215671, 7985196, 11550542, 17022228, 25924746, 37638033 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(0) = 1 as the empty product equals 1. [Joerg Arndt, Oct 06 2012] LINKS Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..1000 from Alois P. Heinz) FORMULA G.f.: 1/(Product_{k>=0} (1-(2*k+1)*x^(2*k+1)) ). - Vladeta Jovovic, May 09 2003 From Vaclav Kotesovec, Dec 15 2015: (Start) a(n) ~ c * 3^(n/3), where c = 28.8343667894061364904068323836801301428320806272385991... if mod(n,3) = 0 c = 28.4762018725001067057188975211539643762050439184376103... if mod(n,3) = 1 c = 28.3618072960214990676207117911869616961300790076910101... if mod(n,3) = 2. (End) MAPLE b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,       b(n, i-1) +`if`(i>n or irem(i, 2)=0, 0, i*b(n-i, i))))     end: a:= n-> b(n\$2): seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014 MATHEMATICA b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || Mod[i, 2] == 0, 0, i*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *) nmax = 40; CoefficientList[Series[Product[1/(1-(2*k-1)*x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *) PROG (PARI) N=66; q='q+O('q^N); gf= 1/ prod(n=1, N, (1-(2*n-1)*q^(2*n-1)) ); Vec(gf) /* Joerg Arndt, Oct 06 2012 */ (Maxima) g(n):= if n=0 then 1 else if oddp(n)=true  then n else 0; P(m, n):=if n=m then g(n) else sum(g(k)*P(k, n-k), k, m, n/2)+g(n); a(n):=P(1, n); makelist(a(n), n, 0, 27); /* Vladimir Kruchinin, Sep 06 2014 */ CROSSREFS Cf. A006906, A022629, A000009. Sequence in context: A319646 A214826 A135065 * A112683 A192030 A117879 Adjacent sequences:  A067550 A067551 A067552 * A067554 A067555 A067556 KEYWORD easy,nonn AUTHOR Naohiro Nomoto, Jan 29 2002 EXTENSIONS Corrected a(0) from 0 to 1, Joerg Arndt, Oct 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 03:01 EDT 2021. Contains 345351 sequences. (Running on oeis4.)