login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A binomial recursion: a(n) is the coefficient of x in z(n), where z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (binomial(n,k) + 1)*z(k) for n > 1.
8

%I #28 Nov 25 2020 17:41:01

%S 1,3,16,106,851,8044,87540,1078177,14827510,225228130,3745187549,

%T 67666969438,1320018345504,27651573264631,619077538462468,

%U 14752261527199414,372797929345665683,9958134039336196072,280354873141108774272,8297089960595144115505,257514010200875255884522

%N A binomial recursion: a(n) is the coefficient of x in z(n), where z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (binomial(n,k) + 1)*z(k) for n > 1.

%H Vaclav Kotesovec, <a href="/A135074/b135074.txt">Table of n, a(n) for n = 1..400</a>

%F Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1}( (1 + binomial(n,k))*z(k) ), then z(n) = p(n)*x + q(n). Lim n-->infinity p(n)/q(n) = (3*Pi -14) / (8 -3*Pi) = 3.2111824896280692148...

%F a(n) ~ (14 - 3*Pi) * sqrt(n) * n! / (9 * sqrt(Pi) * log(2)^(n + 3/2)). - _Vaclav Kotesovec_, Nov 25 2020

%F E.g.f.: (exp(3*x/2)*(14 + 3*Pi) - 12*exp(3*x/2)*arcsin(exp(x/2)/sqrt(2))) / (18*(2 - exp(x))^(3/2)) - (2*(1 - 3*x) + exp(x)*(5 + 3*x))/(9*(2 - exp(x))). - _Vaclav Kotesovec_, Nov 25 2020

%t z[1] := x; z[n_] := 1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n - 1}];

%t Table[Coefficient[z[n], x], {n, 1, 15}] (* _G. C. Greubel_, Sep 22 2016 *)

%t z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* _Vaclav Kotesovec_, Nov 25 2020 *)

%t nmax = 30; Rest[Simplify[CoefficientList[Series[(E^(3*x/2)*(14 + 3*Pi) - 12*E^(3*x/2)*ArcSin[E^(x/2)/Sqrt[2]]) / (18*(2 - E^x)^(3/2)) - (2*(1 - 3*x) + E^x*(5 + 3*x))/(9*(2 - E^x)), {x, 0, nmax}], x] * Range[0, nmax]!]] (* _Vaclav Kotesovec_, Nov 25 2020 *)

%o (PARI) r=1;s=1;v=vector(120,j,x);for(n=2,120, g=r+sum(k=1,n-1,(s+binomial(n,k))*v[k]); v[n]=g); z(n)=v[n];p(n)=polcoeff(z(n),1);q(n)=polcoeff(z(n),0);a(n)=p(n);

%Y Cf. A135075.

%K nonn

%O 1,2

%A _Benoit Cloitre_, Nov 17 2007

%E New name from _Charles R Greathouse IV_, Sep 22 2016

%E More terms from _Amiram Eldar_, Nov 25 2020