login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A055628
Primes p whose period of the reciprocal 1/p is (p-1)/3.
13
103, 127, 139, 331, 349, 421, 457, 463, 607, 661, 673, 691, 739, 829, 967, 1657, 1669, 1699, 1753, 1993, 2011, 2131, 2287, 2647, 2659, 2749, 2953, 3217, 3229, 3583, 3691, 3697, 3739, 3793, 3823, 3931, 4273, 4297, 4513, 4549, 4657, 4903, 4909, 4993, 5011
OFFSET
1,1
COMMENTS
Cyclic numbers of the third degree (or third order): the reciprocals of these numbers belong to one of three different cycles. Each cycle has (number-1)/3 digits.
All primes p except 2 or 5 have a reciprocal with period which divides p-1.
REFERENCES
Stephen P. Richards, A Number For Your Thoughts, 1982, 1984, Box 501, New Providence, NJ, 07974, ISBN 0-9608224-0-2.
EXAMPLE
127 has period 42 and (127-1)/3 = 126/3 = 42.
MATHEMATICA
LP[ n_Integer ] := (ds = Divisors[ n - 1 ]; Take[ ds, Position[ PowerMod[ 10, ds, n ], 1 ][ [ 1, 1 ] ] ][ [ -1 ] ]); CL[ n_Integer ] := (n - 1)/LP[ n ]; Select[ Range[ 7, 7500 ], PrimeQ[ # ] && CL[ # ] == 3 & ]
f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 700]], f[ # ] == 3 &] (* Robert G. Wilson v, Sep 14 2004 *)
KEYWORD
nonn,base
AUTHOR
Don Willard (dwillard(AT)prairie.cc.il.us), Jun 05 2000
EXTENSIONS
More terms from Robert G. Wilson v, Aug 02 2000
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007
STATUS
approved