OFFSET
1,1
COMMENTS
First cyclic number of n-th degree (or n-th order): the reciprocals of these numbers belong to one of n different cycles. Each cycle has (a(n) - 1)/n digits.
From Robert G. Wilson v, Aug 21 2014: (Start)
recursive by indices:
1, 7, 211, 79337, 634776923741, ...
2, 3, 103, 2368589, 785245568161181, ...
4, 53, 135257, 2332901103899, ...
5, 11, 353, 3795457, 693814982285339, ...
6, 79, 26861, 23947548497, ...
8, 41, 118901, 1015118238709, ...
9, 73, 142789, 267291583927, ...
10, 281, 3097183, 66880786504811, ...
12, 37, 18131, 105385168331, ...
13, 2393, 11160953, ...
... .
(End)
REFERENCES
John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 162.
M. Gardner, Mathematical Circus, Cambridge University Press (1996).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
MATHEMATICA
f[n_Integer] := Block[{k = 1, p}, While[p = k*n + 1; ! PrimeQ[p] || p != 1 + n*MultiplicativeOrder[10, p] || GCD[10, p] > 1, k++]; p]; Array[f, 50] (* Robert G. Wilson v, Apr 19 2005; revised Aug 20 2014 *)
CROSSREFS
KEYWORD
nonn,easy,nice,base
AUTHOR
Robert G. Wilson v, 1994; Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 22 2000
EXTENSIONS
More terms from David W. Wilson, May 22 2000
STATUS
approved