OFFSET
1,1
COMMENTS
The term "exactly" means that before the first and after the last primes of chain, the immediate primes are not congruent to 5 modulo 6.
a(21)>2^31, a(22)= 766319189. - Hugo Pfoertner, Jul 31 2003
See A057622 for the variant where "exactly" is replaced by "at least". See A055625 for the variant "congruent to 1 (mod 6)". - M. F. Hasler, Sep 03 2016
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..35 (terms < 4*10^14)
J. K. Andersen, Consecutive Congruent Primes.
MATHEMATICA
pp = Table[{p = Prime[n], Mod[p, 6]}, {n, 10^6}];
sp = Split[pp, Mod[#1[[2]], 6] == Mod[#2[[2]], 6]&];
a[n_] := SelectFirst[sp, Length[#] == n && MatchQ[#, {{_Integer, 5} ..}]& ][[1, 1]];
Table[an = a[n]; Print[n, " ", an]; an, {n, 1, 13}] (* Jean-François Alcover, Nov 21 2018 *)
PROG
See link in A085516.
(PARI) okchain(n, p) = {if ((precprime(p-1) % 6) == 5, return (0)); for (i=1, n, if ((p % 6) != 5, return (0)); p = nextprime(p+1); ); if ((p % 6) == 5, 0, 1); }
a(n) = {p = 5; while (! okchain(n, p), p = nextprime(p+1)); p; } \\ Michel Marcus, Dec 17 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jun 05 2000
EXTENSIONS
a(9)-a(13), including correction of a(9)-a(10) from Reiner Martin, Jul 18 2001
a(14)-a(20) from Hugo Pfoertner, Jul 31 2003
a(21)-a(25) from Jens Kruse Andersen, May 30 2006
a(26) and beyond from Giovanni Resta, Aug 04 2013
STATUS
approved