login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows, where T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0, where T^n denotes the n-th matrix power of T.
6

%I #15 Jun 14 2017 00:35:31

%S 0,1,0,1,2,0,3,2,3,0,14,8,3,4,0,87,46,15,4,5,0,669,338,102,24,5,6,0,

%T 6098,2992,861,188,35,6,7,0,64050,30800,8589,1788,310,48,7,8,0,759817,

%U 360110,98238,19800,3275,474,63,8,9,0,10028799,4701734,1262208,248624

%N Triangle T, read by rows, where T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0, where T^n denotes the n-th matrix power of T.

%H Paul D. Hanna, <a href="/A132623/b132623.txt">Rows n = 0..45, flattened.</a>

%F G.f. of column k: (k+1)*x^(k+1) = Sum_{n>=0} T(n,k) * x^n * (1-x)^(n-k) / Product_{j=k+1..n-1} (1+j*x).

%F T(n,k) = [x^n] { (k+1)*x^(k+1) - Sum_{m=k+1..n-1} T(m,k)*x^m*(1-x)^(m-k) / Product_{j=k+1..m-1} (1+j*x) } for n>k with T(n,k)=0 when k>=n.

%e Triangle begins:

%e 0;

%e 1, 0;

%e 1, 2, 0;

%e 3, 2, 3, 0;

%e 14, 8, 3, 4, 0;

%e 87, 46, 15, 4, 5, 0;

%e 669, 338, 102, 24, 5, 6, 0;

%e 6098, 2992, 861, 188, 35, 6, 7, 0;

%e 64050, 30800, 8589, 1788, 310, 48, 7, 8, 0;

%e 759817, 360110, 98238, 19800, 3275, 474, 63, 8, 9, 0; ...

%e -------------------------------------

%e MATRIX POWER SERIES PROPERTY.

%e [I - T]^-1 = Sum_{n>=0} T^n and equals T shifted up 1 row

%e (with '1's in the main diagonal):

%e 1;

%e 1, 1;

%e 3, 2, 1;

%e 14, 8, 3, 1;

%e 87, 46, 15, 4, 1;

%e 669, 338, 102, 24, 5, 1; ...

%e -------------------------------------

%e GENERATE T FROM MATRIX POWERS OF T.

%e Matrix square T^2 begins:

%e 0;

%e 0, 0;

%e 2, 0, 0;

%e 5, 6, 0, 0;

%e 23, 14, 12, 0, 0;

%e 143, 78, 27, 20, 0, 0; ...

%e so that T(4,1) = T(3,1) + [T^2](3,1) = 2 + 6 = 8;

%e and T(3,0) = T(2,0) + [T^2](2,0) = 1 + 2 = 3.

%e Matrix cube T^3 begins:

%e 0;

%e 0, 0;

%e 0, 0, 0;

%e 6, 0, 0, 0;

%e 26, 24, 0, 0, 0;

%e 165, 94, 60, 0, 0, 0; ...

%e so that T(5,1) = T(4,1) + [T^2](4,1) + [T^3](4,1) = 8 + 14 + 24 = 46;

%e and T(4,0) = T(3,0) + [T^2](3,0) + [T^3](3,0) = 3 + 5 + 6 = 14.

%e -------------------------------------

%e ILLUSTRATE G.F. FOR COLUMN k:

%e k=0: x = T(1,0)*x*(1-x) + T(2,0)*x^2*(1-x)^2/((1+x)) + T(3,0)*x^3*(1-x)^3/((1+x)*(1+2*x)) + T(4,0)*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) +...

%e k=1: 2*x^2 = T(2,1)*x^2*(1-x) + T(3,1)*x^3*(1-x)^2/((1+2*x)) + T(4,1)*x^4*(1-x)^3/((1+2*x)*(1+3*x)) + T(5,1)*x^5*(1-x)^4/((1+2*x)*(1+3*x)*(1+4*x)) +...

%e k=2: 3*x^3 = T(3,2)*x^3*(1-x) + T(4,2)*x^4*(1-x)^2/((1+3*x)) + T(5,2)*x^5*(1-x)^3/((1+3*x)*(1+4*x)) + T(6,2)*x^6*(1-x)^4/((1+3*x)*(1+4*x)*(1+5*x)) +...

%o (PARI) /* Using the matrix power formula: */

%o T(n,k)=local(M=if(n<=0,Mat(1),matrix(n,n,r,c,if(r>=c,T(r-1,c-1))))); if(n<k || k<0,0, if(n==k,0, if(n==k+1,n,sum(j=1,n-k-1,(M^j)[n,k+1]) )))

%o (PARI) /* Using the g.f. formula for columns: */

%o T(n,k)=if(n<k+1, 0, polcoeff((k+1)*x^(k+1)-sum(m=k+1, n-1, T(m,k)*x^m*(1-x)^(m-k)/prod(j=k+1, m-1, 1+j*x+x*O(x^n))), n))

%o for(n=0,15, for(k=0,n, print1(T(n,k),", ")); print(""))

%Y Cf. A132624 (column 0), A208676, A208677, A208678.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Aug 25 2007