login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 0 of triangle A132623.
8

%I #22 Jan 08 2025 13:10:57

%S 1,1,3,14,87,669,6098,64050,759817,10028799,145575337,2302441248,

%T 39377544316,723627151168,14212023123570,296941929433826,

%U 6573946153123597,153673571064191583,3781352342496043197,97672909528404096334,2641852466110908004319

%N Column 0 of triangle A132623.

%C Triangle T=A132623 is generated by sums of matrix powers of itself such that: T(n,k) = Sum_{j=1..n-k-1} [T^j](n-1,k) with T(n+1,n) = n+1 and T(n,n)=0 for n>=0.

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014.

%H Jun Yan, <a href="https://arxiv.org/abs/2404.07958">Results on pattern avoidance in parking functions</a>, arXiv:2404.07958 [math.CO], 2024. See pp. 11, 31, 34.

%H Jun Yan, <a href="https://arxiv.org/abs/2501.01152">Lattice paths enumerations weighted by ascent lengths</a>, arXiv:2501.01152 [math.CO], 2025. See p. 16.

%F G.f.: x = Sum_{n>=1} a(n) * x^n*(1-x)^n / Product_{k=1..n-1} (1 + k*x).

%e G.f.: x = 1*x*(1-x) + 1*x^2*(1-x)^2/(1+x) + 3*x^3*(1-x)^3/((1+x)*(1+2*x)) + 14*x^4*(1-x)^4/((1+x)*(1+2*x)*(1+3*x)) + 87*x^5*(1-x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...

%t a[1] = 1; a[n_] := a[n] = SeriesCoefficient[x - Sum[a[k]*x^k*(1 - x)^k/ Product[1 + j*x + O[x]^n, {j, 0, k-1}], {k, 1, n-1}], {x, 0, n}];

%t Array[a, 21] (* _Jean-François Alcover_, Jul 26 2018, from PARI *)

%o (PARI) {a(n)=if(n<1, 0, polcoeff(x-sum(k=1, n-1, a(k)*x^k*(1-x)^k/prod(j=0, k-1, 1+j*x+x*O(x^n))), n))}

%o for(n=1,20,print1(a(n),", "))

%Y Cf. A132623, A208676, A208677, A208678.

%K nonn,changed

%O 1,3

%A _Paul D. Hanna_, Aug 25 2007