login
A095003
a(n) = 9*a(n-1) - 9*a(n-2) + a(n-3).
2
1, 6, 45, 352, 2769, 21798, 171613, 1351104, 10637217, 83746630, 659335821, 5190939936, 40868183665, 321754529382, 2533168051389, 19943589881728, 157015551002433, 1236180818137734, 9732430994099437, 76623267134657760, 603253706083162641, 4749406381530643366
OFFSET
1,2
COMMENTS
a(n)/a(n-1) tends to 7.87298... = 4 + sqrt(15) = C (having the property that C + 1/C = 8). Eigenvalues of M are C, 1/C, 1; being roots of x^3 - 9x^2 + 9x - 1.
FORMULA
a(n+3) = 9*a(n+2) - 9*a(n+1) + a(n); given a(1) = 1, a(2) = 6, a(3) = 45.
Let M be the 3 X 3 matrix [1 1 1 / 1 2 3 / 1 3 6]. M^n * [1 0 0] = [A095002(n) a(n) A095004(n)].
EXAMPLE
a(4) = 352 since M^4 * [1 0 0] = [145, 352, 640].
MAPLE
a:= n-> (<<1|1|1>, <1|2|3>, <1|3|6>>^n)[1, 2]:
seq(a(n), n=1..23); # Alois P. Heinz, Jun 06 2021
MATHEMATICA
a[n_] := (MatrixPower[{{1, 1, 1}, {1, 2, 3}, {1, 3, 6}}, n].{{1}, {0}, {0}})[[2, 1]]; Table[ a[n], {n, 20}]; (* Robert G. Wilson v, May 29 2004 *)
LinearRecurrence[{9, -9, 1}, {1, 6, 45}, 30] (* Harvey P. Dale, Nov 12 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, May 27 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 29 2004
Definition corrected and edited by Georg Fischer, Jun 06 2021
STATUS
approved