login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058859
Number of 1-connected rooted cubic planar maps with n faces.
3
1, 3, 19, 143, 1089, 8564, 69075, 569469, 4783377, 40829748, 353395155, 3096104105, 27415923905, 245069538465, 2209155012387, 20064713628389, 183478258249569, 1688112897834496, 15618577076864579, 145242456429736935
OFFSET
4,2
LINKS
Z. Gao and N. C. Wormald, Enumeration of rooted cubic planar maps
Z. Gao and N. C. Wormald, Enumeration of rooted cubic planar maps, Annals of Combinatorics, 6 (2002), no. 3-4, 313-325.
FORMULA
G.f.: x^4*(1-2*x-4*x^2)*m-2*x^8*m^2, where m is defined by 16*x^11*m^4 + (-24*x^9+32*x^8+72*x^7)*m^3 + (-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2 + (-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m - x^2-11*x+1=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 16 2018: (Start):
G.f. y=A(x) satisfies:
0 = 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41).
0 = x*(4*x^2 + 8*x + 5)*(27*x^6 + 216*x^5 + 171*x^4 - 208*x^3 - 339*x^2 + 24*x + 1)*(53687232*x^17 + 962429472*x^16 + 4910442696*x^15 + 11262716564*x^14 + 13535708340*x^13 + 6699339314*x^12 - 8161216832*x^11 - 27707772057*x^10 - 38282906893*x^9 - 23841839272*x^8 + 3164178022*x^7 + 13551725887*x^6 + 6618789645*x^5 + 110368160*x^4 - 189595230*x^3 + 52114000*x^2 - 2282040*x - 80000)*y'''' - (23192884224*x^25 + 642325749120*x^24 + 7010404371072*x^23 + 38396140051536*x^22 + 119087871158520*x^21 + 209055666121344*x^20 + 149537518315396*x^19 - 179206877652920*x^18 - 594068689834972*x^17 - 713069283397760*x^16 - 388115755832091*x^15 + 185412410945637*x^14 + 709124462066474*x^13 + 898548947063912*x^12 + 629038710881040*x^11 + 159866881148998*x^10 - 107640739893374*x^9 - 101244290972424*x^8 - 23418947186993*x^7 + 3644481830365*x^6 + 957436398080*x^5 - 94641974160*x^4 + 1607421440*x^3 + 430075760*x^2 - 17060400*x - 400000)*y''' + (69578652672*x^24 + 1910859372288*x^23 + 21034975582656*x^22 + 114742977687936*x^21 + 350375920009560*x^20 + 585065268522672*x^19 + 317856584972580*x^18 - 736872920930424*x^17 - 1812132349221252*x^16 - 1696870248263700*x^15 - 376785528937023*x^14 + 1026609868750112*x^13 + 1799851001684942*x^12 + 1902275760186412*x^11 + 1364464778889680*x^10 + 504031822062384*x^9 - 75374914747162*x^8 - 173636873122824*x^7 - 67965626046313*x^6 - 3235617436480*x^5 + 1670710238920*x^4 - 60241392600*x^3 - 9066655340*x^2 + 1117875760*x + 15179600)*y'' - 12*(11596442112*x^23 + 315790249536*x^22 + 3414867276384*x^21 + 17899179378120*x^20 + 51714502467480*x^19 + 77928289056012*x^18 + 22675972179932*x^17 - 134244171463804*x^16 - 254323096657040*x^15 - 181481980531415*x^14 + 24427607774667*x^13 + 176309477492908*x^12 + 214672437288248*x^11 + 192416432064275*x^10 + 135698454441595*x^9 + 59484339948854*x^8 + 1838501691038*x^7 - 16090673029130*x^6 - 8704257466200*x^5 - 1085436408240*x^4 + 33590844600*x^3 - 6624333760*x^2 - 719889600*x - 8800000)*y' + 12*(11596442112*x^22 + 313103937024*x^21 + 3232316223360*x^20 + 15530584062240*x^19 + 39522162905640*x^18 + 45540724655832*x^17 - 16695945361396*x^16 - 123726467878420*x^15 - 152050336659260*x^14 - 49261893247550*x^13 + 73707236060447*x^12 + 119787972312984*x^11 + 115583117491500*x^10 + 95686381642950*x^9 + 56811985465335*x^8 + 13932882885644*x^7 - 9032398496482*x^6 - 8810946218840*x^5 - 1354608403560*x^4 + 47155824160*x^3 - 6777547760*x^2 - 855133760*x - 10609600)*y.
(End)
MAPLE
eq:=16*x^11*m^4+(-24*x^9+32*x^8+72*x^7)*m^3+(-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2+(-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m-x^2-11*x+1: m:=sum(A[j]*x^j, j=0..35): A[0]:=solve(subs(x=0, expand(eq))): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq), x^n)=0) od: C:=(1-2*x-4*x^2)*x^4*m-2*x^8*m^2: Cser:=series(C, x=0, 30): seq(coeff(Cser, x^n), n=4..26); # Emeric Deutsch, Nov 30 2005
PROG
(PARI)
F = x^4*(1-2*x-4*x^2)*z - 2*x^8*z^2;
G = 16*x^11*z^4 - 8*x^7*(3*x^2 - 4*x - 9)*z^3 - x^3*(15*x^4 + 108*x^3 + 194*x^2 + 92*x - 1)*z^2 - (2*x^5 + 33*x^4 + 70*x^3 + 46*x^2 - 16*x + 1)*z - x^2 - 11*x + 1;
Z(N) = {
my(z0 = 1 + O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1); z0;
};
seq(N) = Vec(subst(F, 'z, Z(N)));
seq(20)
\\ test: y = Ser(seq(303))*'x^4; 0 == 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41)
\\ Gheorghe Coserea, Jul 15 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006
EXTENSIONS
More terms from Emeric Deutsch, Nov 30 2005
STATUS
approved