OFFSET
0,2
COMMENTS
The sequence satisfies the Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence a_m(n) defined as the n-th order Taylor polynomial of c(x)^(m*n) evaluated at x = 1 satisfies the same supercongruences. For cases A099837(m = -2), A100219 (m = -1), A000012 (m = 0), A333093 (m = 1), A333095 (m = 3), A333096 (m = 4), A333097 (m = 5).
FORMULA
a(n) = Sum_{k = 0..n} 2*n/(2*n+k)*binomial(2*n+2*k-1, k) for n >= 1.
a(n) = [x^n] ( (1 + x)*c^2(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + ... = (1/x)*Revert( x/c^2(x) ) is the o.g.f. of A069271.
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), x*f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 2^(8*n + 7/2) / (13 * sqrt(Pi*n) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 28 2020
a(n) = Sum_{k = 0..n} n/(2*n+2*k)*binomial(2*n+2*k, k) for n >= 1. - Peter Bala, Apr 19 2024
EXAMPLE
n-th order Taylor polynomial of c(x)^(2*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^2 = 1 + 2*x + O(x^2)
n = 2: c(x)^4 = 1 + 4*x + 14*x^2 + O(x^3)
n = 3: c(x)^6 = 1 + 6*x + 27*x^2 + 110*x^3 + O(x^4)
n = 4: c(x)^8 = 1 + 8*x + 44*x^2 + 208*x^3 + 910*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 14 = 19, a(3) = 1 + 6 + 27 + 110 = 144 and a(4) = 1 + 8 + 44 + 208 + 910 = 1171.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 14 4 1 19
n = 3 | 110 27 6 1 144
n = 4 | 910 208 44 8 1 1171
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 395683988547 - 3 = (2^6)*(3^2)*(13^3)*312677 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 20288470364637624223 - 144 = (7^3)*17*269*12934629208861 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150194008594715226556753 - 9878 = (5^6)*2593*5471* 677584325533 == 0 ( mod 5^6 ).
MAPLE
seq(add(2*n/(2*n+k)*binomial(2*n+2*k-1, k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x, n) -> series(c(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
MATHEMATICA
Table[SeriesCoefficient[((1 + x)^2 * (1 - x - Sqrt[(1 - 3*x)*(1 + x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 15 2020
STATUS
approved