login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333092
a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(3*n) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
2
1, 7, 109, 1951, 36993, 724007, 14457421, 292732671, 5987886081, 123440423047, 2560421160109, 53373725431583, 1117198199782785, 23465732683090471, 494330214846965389, 10440064992542621951, 220978578227187097601, 4686426367646858888711, 99559270036968523118317
OFFSET
0,2
COMMENTS
The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers n and k. Examples of these congruences are given below.
More generally, for each integer m, we conjecture that the sequence a_m(n) defined as the n-th order Taylor polynomial of S(x)^(m*n) evaluated at x = 1 satisfies the same congruences. For cases, see A333090 (m = 1) and A333091 (m = 2). For similarly defined sequences see A333093 through A333097.
FORMULA
a(n) = [x^n] ( (1 + x)*S^3(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*f'(x)/f(x) )/( 1 - x*f(x) ), where f(x) = 1 + 6*x + 66*x^2 + 902*x^3 + 13794*x^4 + ... = (1/x) * series reversion of ( x/S^3(x) ).
Row sums of the Riordan array ( 1 + x*f'(x)/f(x), x*f(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 3*sqrt(85 + 21*sqrt(17)) * (349 + 85*sqrt(17))^n / (68 * sqrt(Pi*n) * 2^(5*n)). - Vaclav Kotesovec, Mar 28 2020
EXAMPLE
n-th order Taylor polynomial of S(x)^(3*n):
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^3 = 1 + 6*x + O(x^2)
n = 2: S(x)^6 = 1 + 12*x + 96*x^2 + O(x^3)
n = 3: S(x)^9 = 1 + 18*x + 198*x^2 + 1734*x^3 + O(x^4)
n = 4: S(x)^12 = 1 + 24*x + 336*x^2 + 3608*x^3 + 33024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 6 = 7, a(2) = 1 + 12 + 96 = 109, a(3) = 1 + 18 + 198 + 1734 = 1951 and a(4) = 1 + 24 + 336 + 3608 + 33024 = 36993.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 6 1 7
n = 2 | 96 12 1 109
n = 3 | 1734 198 18 1 1951
n = 4 | 33024 3608 336 24 1 36993
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 6, 96, 1734, 33024, 648006, ...] = [x^n] S(x)^(3*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 23465732683090471 - 7 = (2^5)*(3^4)*(13^3)*83*911*54497 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 962815680123979633351467303 - 1951 = (2^3)*(7^3)*29*41* 1832861*161008076794727 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 201479167004032422703424646224007 - 724007 = (2^5)*(5^6)* 402958334008064845406849291 == 0 ( mod 5^6 ).
MAPLE
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x, n) -> series(S(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
MATHEMATICA
Table[SeriesCoefficient[((1+x)*(1 - 3*x*(1+x) + (x^2 + x - 1)*Sqrt[1 - 4*x*(1+x)]) / (2*x^3))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
CROSSREFS
Cf. A006318, A333090 through A333097.
Sequence in context: A202515 A096498 A123804 * A274668 A239848 A274787
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 22 2020
STATUS
approved