login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201827
E.g.f. satisfies: A(log(1+x)) = x*exp(A(x)).
0
1, 3, 19, 203, 3116, 63400, 1626815, 50869481, 1890809326, 81984117362, 4085969612187, 231307144828171, 14729010409178287, 1046405525995004427, 82366263901831053010, 7140311864811600275193, 678154920246172000643119, 70238663891082116737406875, 7900753256152524322019355019
OFFSET
1,2
FORMULA
a(n) = n!*T(n,1), T(n,m) = Sum_{k=1..n-m} (T(n-m,k)*m^k/k! - Stirling1(n,k+m-1)*(k+m-1)!/n!*T(k+m-1,m)), n > m, with T(n,n)=1.
E.g.f. satisfies: A(x) = (exp(x)-1)*exp( A(exp(x)-1) ).
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 19*x^3/3! + 203*x^4/4! + 3116*x^5/5! + ...
A(log(1+x)) = x + 2*x^2/2! + 12*x^3/3! + 116*x^4/4! + 1625*x^5/5! + ...
MATHEMATICA
t[n_, k_] /; n < k = 0; t[n_, n_] = 1; t[n_, k_] := t[n, k] = Sum[ t[n-k, j]*k^j/j! - StirlingS1[n, k+j-1]*(k+j-1)!/n!*t[k+j-1, k], {j, 1, n-k}]; a[n_] := n!*t[n, 1]; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Dec 21 2011, after Vladimir Kruchinin's formula *)
PROG
(Maxima)
array(B, 25, 25);
fillarray (B, makelist (-1, i, 1, 1000));
T(n, m):=if B[n, m]=-1 then B[n, m]:(if n=m then 1 else sum(T(n-m, k)*m^k/k!-stirling1(n, k+m-1)*(k+m-1)!/n!*T(k+m-1, m), k, 1, n-m)) else B[n, m];
makelist(n!*T(n, 1), n, 1, 21);
(PARI) /* Using A(x) = (exp(x)-1)*exp(A(exp(x)-1)) [from Paul D. Hanna]: */
{a(n)=local(A=x, X=x+x*O(x^n)); for(i=1, n, A=(exp(X)-1)*exp(subst(A, x, exp(X)-1))); n!*polcoeff(A, n)}
for(n=0, 31, print1(a(n), ", "))
(PARI) /* Using Vladimir Kruchinin's formula [program by Paul D. Hanna]: */
{Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}
{T(n, k)=if(n<k, 0, if(n==k, 1, sum(j=1, n-k, T(n-k, j)*k^j/j! - Stirling1(n, k+j-1)*(k+j-1)!/n!*T(k+j-1, k))))}
{a(n) = n!*T(n, 1)}
CROSSREFS
Sequence in context: A027546 A301419 A377608 * A230321 A108993 A245308
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Dec 05 2011
STATUS
approved