login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201826
Central coefficients in Product_{k=1..n} (1 + k*y + y^2).
3
1, 1, 4, 18, 100, 660, 5038, 43624, 422252, 4516380, 52885644, 672781824, 9238314358, 136175455234, 2144494356834, 35930786795040, 638168940129732, 11976278012219556, 236791150694618872, 4919643784275283480, 107152493449339765396, 2441410548192907949196
OFFSET
0,3
FORMULA
E.g.f.: 1/(1-x) * Sum_{n>=0} log(1 - x)^(2*n) / n!^2. - Paul D. Hanna, Mar 02 2019
EXAMPLE
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 18*x^3/3! + 100*x^4/4! + 660*x^5/5! + 5038*x^6/6! + 43624*x^7/7! + 422252*x^8/8! + 4516380*x^9/9! + 52885644*x^10/10! + ...
The coefficients in Product_{k=1..n} (1 + k*y + y^2), n>=0, form triangle A249790:
[1];
[1, 1, 1];
[1, 3, 4, 3, 1];
[1, 6, 14, 18, 14, 6, 1];
[1, 10, 39, 80, 100, 80, 39, 10, 1];
[1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
in which the central terms of the rows form this sequence.
MATHEMATICA
Flatten[{1, Table[Coefficient[Expand[Product[1 + k*x + x^2, {k, 1, n}]], x^n], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
PROG
(PARI) {a(n) = polcoeff(prod(k=1, n, 1 + k*x + x^2 +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = n!*polcoeff( sum(m=0, n, log(1 - x +x*O(x^n))^(2*m)/m!^2 ) / (1 - x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 02 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
STATUS
approved