login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201824
G.f.: Sum_{n>=0} log( 1/sqrt(1-2^n*x) )^n / n!.
0
1, 1, 3, 20, 330, 15504, 2324784, 1198774720, 2214919483920, 14955617450039552, 372282884729800002816, 34307640086657221926620160, 11737947382912650038702322439680, 14950677150224267346380689021913026560, 71100479076279984636914230616119201295462400
OFFSET
0,3
FORMULA
a(n) = binomial(2^(n-1) + n - 1, n).
a(n) = A006127(n-1)*A060690(n-1)/n for n>0. - Hugo Pfoertner, Jul 19 2024
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 20*x^3 + 330*x^4 + 15504*x^5 +...
where
A(x) = 1 + log(1/sqrt(1-2*x)) + log(1/sqrt(1-4*x))^2/2! + log(1/sqrt(1-8*x))^3/3! + log(1/sqrt(1-16*x))^4/4! +...
PROG
(PARI) {a(n)=binomial(2^(n-1)+n-1, n)}
(PARI) {a(n)=polcoef(sum(m=0, n+1, log(1/sqrt(1-2^m*x +x^2*O(x^n)))^m/m!), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2011
STATUS
approved