login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163138
G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).
3
1, 3, 20, 329, 22584, 7938470, 12605643936, 84977963809781, 2379247465188706528, 273419351336298753589802, 128009562526607810326874017088, 242979581192696030760182903464959706
OFFSET
0,2
COMMENTS
More generally, we have the following identity:
If A(x,q) = exp( Sum_{n>=1} (q^n + A(x,q))^n * x^n/n ), then
A(x,q) = 1/(1-x*A(x,q))*exp( Sum_{n>=1} q^(n^2)/(1-q^n*x*A(x,q))^n*x^n/n ).
Conjecture: if q is an integer, then A(x,q) is a power series in x with integer coefficients.
Setting q=1 defines the g.f. of the large Schroeder numbers (A006318).
FORMULA
G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...
log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...
log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...
log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
MATHEMATICA
m = 12; A[_] = 1; Do[A[x_] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A369322 A130531 A240777 * A201824 A203519 A003150
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 07 2009
EXTENSIONS
Comment corrected by Paul D. Hanna, Aug 08 2009
STATUS
approved