OFFSET
0,2
COMMENTS
More generally, we have the following identity:
If A(x,q) = exp( Sum_{n>=1} (q^n + A(x,q))^n * x^n/n ), then
A(x,q) = 1/(1-x*A(x,q))*exp( Sum_{n>=1} q^(n^2)/(1-q^n*x*A(x,q))^n*x^n/n ).
Conjecture: if q is an integer, then A(x,q) is a power series in x with integer coefficients.
Setting q=1 defines the g.f. of the large Schroeder numbers (A006318).
FORMULA
G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...
log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...
log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...
log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...
MATHEMATICA
m = 12; A[_] = 1; Do[A[x_] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Nov 03 2019 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 07 2009
EXTENSIONS
Comment corrected by Paul D. Hanna, Aug 08 2009
STATUS
approved