login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).
3

%I #8 Nov 03 2019 04:31:11

%S 1,3,20,329,22584,7938470,12605643936,84977963809781,

%T 2379247465188706528,273419351336298753589802,

%U 128009562526607810326874017088,242979581192696030760182903464959706

%N G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ).

%C More generally, we have the following identity:

%C If A(x,q) = exp( Sum_{n>=1} (q^n + A(x,q))^n * x^n/n ), then

%C A(x,q) = 1/(1-x*A(x,q))*exp( Sum_{n>=1} q^(n^2)/(1-q^n*x*A(x,q))^n*x^n/n ).

%C Conjecture: if q is an integer, then A(x,q) is a power series in x with integer coefficients.

%C Setting q=1 defines the g.f. of the large Schroeder numbers (A006318).

%F G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ).

%e G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +...

%e log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +...

%e log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +...

%e log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +...

%t m = 12; A[_] = 1; Do[A[x_] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 03 2019 *)

%o (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}

%Y Cf. A202518, A155200.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Aug 07 2009

%E Comment corrected by _Paul D. Hanna_, Aug 08 2009