login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A202518 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n - A(x))^n * x^n/n ). 4
1, 1, 4, 111, 12600, 5722258, 10419647136, 76124127132667, 2234758718926030048, 263964471372716219981614, 125532541357451846737479404864, 240382906462440786858510574342553910, 1852958218856132372722626702327036659515008 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Compare g.f. with: G(x) = exp(Sum_{n>=1} (2 - G(x))^n * x^n/n) = 1 + x*C(-x^2) where C(x) is the Catalan function (A000108).

LINKS

Table of n, a(n) for n=0..12.

EXAMPLE

G.f.: A(x) = 1 + x + 4*x^2 + 111*x^3 + 12600*x^4 + 5722258*x^5 +...

where

log(A(x)) = (2 - A(x))*x + (2^2 - A(x))^2*x^2/2 + (2^3 - A(x))^3*x^3/3 + (2^4 - A(x))^4*x^4/4 +...

PROG

(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m-A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}

CROSSREFS

Cf. A163138, A155200.

Sequence in context: A286424 A181272 A214107 * A212655 A181485 A135917

Adjacent sequences:  A202515 A202516 A202517 * A202519 A202520 A202521

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 13:27 EDT 2020. Contains 335663 sequences. (Running on oeis4.)