The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202519 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2*A(x) + (-1)^n)^n * x^n/n ). 3
 1, 1, 7, 27, 165, 877, 5451, 32887, 210505, 1347865, 8859695, 58647219, 393704205, 2662542565, 18166847507, 124738843247, 861922384657, 5986483380145, 41780493605719, 292817777533259, 2060138522838645, 14544377538584925, 103007560370361691, 731635362026777831 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..23. FORMULA G.f. satisfies: A(x) = 1/(1-2*x*A(x)) * exp( Sum_{n>=1} (-1)^n/(1 - (-1)^n*2*x*A(x))^n * x^n/n ). G.f. satisfies: A(x) = sqrt( (1 - (2*A(x)-1)^2*x^2)/(1 - (2*A(x)+1)^2*x^2) ) / (1 - (2*A(x)-1)*x). G.f. satisfies: 0 = -(1-x) - 2*x*A(x) + (1-x)*(1+x)^2*A(x)^2 - 2*x*(1+x)^2*A(x)^3 - 2^2*x^2*(1-x)*A(x)^4 + 2^3*x^3*A(x)^5. EXAMPLE G.f.: A(x) = 1 + x + 7*x^2 + 27*x^3 + 165*x^4 + 877*x^5 + 5451*x^6 +... where log(A(x)) = (2*A(x) - 1)*x + (2*A(x) + 1)^2*x^2/2 + (2*A(x) - 1)^3*x^3/3 + (2*A(x) + 1)^4*x^4/4 +... log(A(x)*(1-2*x*A(x))) = -1/(1 + 2*x*A(x))*x + 1/(1 - 2*x*A(x))^2*x^2/2 - 1/(1 + 2*x*A(x))^3*x^3/3 + 1/(1 - 2*x*A(x))^4*x^4/4 +... PROG (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2*A+(-1)^m+x*O(x^n))^m*x^m/m))); polcoeff(A, n)} CROSSREFS Cf. A185385, A163138, A202669, A155200. Sequence in context: A179597 A295209 A151496 * A192250 A035081 A193257 Adjacent sequences: A202516 A202517 A202518 * A202520 A202521 A202522 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 19 22:34 EDT 2024. Contains 374441 sequences. (Running on oeis4.)