OFFSET
0,5
COMMENTS
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..500
FORMULA
a(n) = (1/n)*Sum_{k=1..n} (sigma(k)^2 - sigma(k,2))/2 * a(n-k) for n>0 with a(0)=1.
Logarithmic derivative yields A119616, the second elementary symmetric function of divisors of n.
EXAMPLE
G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 2*x^5 + 12*x^6 + 6*x^7 + 26*x^8 +...
where
log(A(x)) = 2*x^2/2 + 3*x^3/3 + 14*x^4/4 + 5*x^5/5 + 47*x^6/6 + 7*x^7/7 + 70*x^8/8 + 39*x^9/9 + 97*x^10/10 + 11*x^11/11 +...+ A119616(n)*x^n/n +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, (sigma(m)^2-sigma(m, 2))/2*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, (sigma(k)^2 - sigma(k, 2))/2 * a(n-k)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 05 2011
STATUS
approved