login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202476
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x + x^2).
4
1, 1, 2, 5, 11, 28, 74, 206, 601, 1826, 5766, 18851, 63676, 221678, 793958, 2920292, 11014653, 42543773, 168074091, 678403932, 2794920078, 11742254750, 50266213000, 219085792538, 971543475593, 4380664101448, 20071848941411, 93403455862117, 441206005123701
OFFSET
0,3
LINKS
FORMULA
Antidiagonal sums of the irregular triangle in which row n is defined by the g.f.: Product_{k=1..n} (1 + k*x + x^2) for n>=0.
G.f.: 1/(1 - x*(1+x+x^2)/(1 + x*(1+x+x^2) - x*(1+2*x+x^2)/(1 + x*(1+2*x+x^2) - x*(1+3*x+x^2)/(1 + x*(1+3*x+x^2) - x*(1+4*x+x^2)/(1 + x*(1+4*x+x^2) -...))))), a continued fraction.
EXAMPLE
The coefficients in Product_{k=1..n} (1+k*x+x^2), n>=0, form the triangle:
[1];
[1, 1, 1];
[1, 3, 4, 3, 1];
[1, 6, 14, 18, 14, 6, 1];
[1, 10, 39, 80, 100, 80, 39, 10, 1];
[1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1];
[1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1];
[1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1]; ...
the antidiagonal sums of which form this sequence.
PROG
(PARI) {a(n)=sum(k=0, n, polcoeff(prod(j=1, n-k, 1+j*x+x^2), k))}
(PARI) {a(n)=local(CF=1+x+x*O(x^n)); for(k=1, n-1, CF=(1+(n-k)*x+x^2)/(1 + x*(1+(n-k)*x+x^2) - x*CF+x*O(x^n))); polcoeff(1/(1-x*CF), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 19 2011
STATUS
approved