login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249790 Triangle in which row n lists the coefficients in Product_{k=1..n} (1 + k*x + x^2), for n>=0, as read by rows. 4
1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 6, 14, 18, 14, 6, 1, 1, 10, 39, 80, 100, 80, 39, 10, 1, 1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1, 1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1, 1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1, 1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..1088, listing terms in rows 0..32 of flattened triangle.

FORMULA

E.g.f.: 1/(1 - x*y)^(1/y + 1 + y). - Paul D. Hanna, Mar 02 2019

E.g.f.: A(x,y) = 1/(1-x*y) * Sum_{k>=0} (1/y^k + y^k)/2^(0^k) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!). - Paul D. Hanna, Mar 02 2019

E.g.f. of diagonal k: (1/y^k)/(1-x*y) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!) for k >= 0. - Paul D. Hanna, Mar 02 2019

E.g.f.: A(x,y) = x / Series_Reversion( F(x,y) ) such that F(x/A(x,y),y) = x, where F(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (n+k)*y + n*y^2). - Paul D. Hanna, Mar 02 2019

EXAMPLE

Triangle begins:

1;

1, 1, 1;

1, 3, 4, 3, 1;

1, 6, 14, 18, 14, 6, 1;

1, 10, 39, 80, 100, 80, 39, 10, 1;

1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1;

1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1;

1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1;

1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252, 358056, 216166, 90720, 25753, 4788, 554, 36, 1;

1, 45, 879, 9810, 69399, 327285, 1058399, 2394270, 3860922, 4516380, 3860922, 2394270, 1058399, 327285, 69399, 9810, 879, 45, 1;

1, 55, 1330, 18645, 168378, 1031085, 4400648, 13305545, 28862021, 45519870, 52885644, 45519870, 28862021, 13305545, 4400648, 1031085, 168378, 18645, 1330, 55, 1; ...

PROG

(PARI) {T(n, k)=polcoeff(prod(m=1, n, 1 + m*x + x^2 +x*O(x^k)), k, x)}

for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))

CROSSREFS

Cf. A201826 (central coefficients), A202474 (a diagonal), A202476, A001710 (row sums).

Cf. A201949 (variant), A324956.

Sequence in context: A096646 A306234 A290057 * A302713 A136206 A262979

Adjacent sequences:  A249787 A249788 A249789 * A249791 A249792 A249793

KEYWORD

nonn,tabf

AUTHOR

Paul D. Hanna, Nov 05 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 23:41 EST 2020. Contains 338670 sequences. (Running on oeis4.)