OFFSET
0,6
LINKS
FORMULA
E.g.f.: 1/(1 - x*y)^(1/y + 1 + y). - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = 1/(1-x*y) * Sum_{k>=0} (1/y^k + y^k)/2^(0^k) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!). - Paul D. Hanna, Mar 02 2019
E.g.f. of diagonal k: (1/y^k)/(1-x*y) * Sum_{n>=0} (-log(1 - x*y))^(2*n+k) / (n!*(n+k)!) for k >= 0. - Paul D. Hanna, Mar 02 2019
E.g.f.: A(x,y) = x / Series_Reversion( F(x,y) ) such that F(x/A(x,y),y) = x, where F(x,y) = Sum_{n>=1} x^n/n! * Product_{k=0..n-2} (n + (n+k)*y + n*y^2). - Paul D. Hanna, Mar 02 2019
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 3, 4, 3, 1;
1, 6, 14, 18, 14, 6, 1;
1, 10, 39, 80, 100, 80, 39, 10, 1;
1, 15, 90, 285, 539, 660, 539, 285, 90, 15, 1;
1, 21, 181, 840, 2339, 4179, 5038, 4179, 2339, 840, 181, 21, 1;
1, 28, 329, 2128, 8400, 21392, 36630, 43624, 36630, 21392, 8400, 2128, 329, 28, 1;
1, 36, 554, 4788, 25753, 90720, 216166, 358056, 422252, 358056, 216166, 90720, 25753, 4788, 554, 36, 1;
1, 45, 879, 9810, 69399, 327285, 1058399, 2394270, 3860922, 4516380, 3860922, 2394270, 1058399, 327285, 69399, 9810, 879, 45, 1;
1, 55, 1330, 18645, 168378, 1031085, 4400648, 13305545, 28862021, 45519870, 52885644, 45519870, 28862021, 13305545, 4400648, 1031085, 168378, 18645, 1330, 55, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(prod(m=1, n, 1 + m*x + x^2 +x*O(x^k)), k, x)}
for(n=0, 10, for(k=0, 2*n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Paul D. Hanna, Nov 05 2014
STATUS
approved