The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249793 G.f.: Sum_{n>=0} x^n/(1-x)^(5*n) * Sum_{k=0..n} C(n,k)^2 * x^k. 3
 1, 1, 7, 35, 171, 856, 4359, 22446, 116557, 609289, 3202088, 16902558, 89550391, 475922764, 2536113322, 13545996260, 72500109601, 388730700761, 2087639484747, 11227578293407, 60461487361452, 325972272495485, 1759323533735344, 9504604121313715, 51393787321667969, 278127959744155754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f.: (1-x)^4 / sqrt(1 - 10*x + 33*x^2 - 56*x^3 + 66*x^4 - 54*x^5 + 28*x^6 - 8*x^7 + x^8). EXAMPLE G.f.: A(x) = 1 + x + 7*x^2 + 35*x^3 + 171*x^4 + 856*x^5 + 4359*x^6 +... where A(x) = 1 + x/(1-x)^5*(1+x) + x^2/(1-x)^10*(1+2^2*x+x^2) + x^3/(1-x)^15*(1+3^2*x+3^2*x^2+x^3) + x^4/(1-x)^20*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) + x^5/(1-x)^25*(1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5) +... PROG (PARI) {a(n)=polcoeff( sum(m=0, n, x^m * sum(k=0, m, binomial(m, k)^2 * x^k) / (1-x +x*O(x^n))^(5*m)), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=polcoeff( (1-x)^5 / sqrt(1 - 10*x + 33*x^2 - 56*x^3 + 66*x^4 - 54*x^5 + 28*x^6 - 8*x^7 + x^8 +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A249946, A249792, A249794. Sequence in context: A055421 A110213 A034348 * A268990 A005055 A037506 Adjacent sequences:  A249790 A249791 A249792 * A249794 A249795 A249796 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 23:41 EST 2020. Contains 338670 sequences. (Running on oeis4.)