login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249788 E.g.f. A(x) satisfies: (A(x)^2 - 4*x)^5 = (2 - A(x)^5)^2. 6
1, 1, -4, 12, -120, 1080, -14400, 241920, -4233600, 103783680, -2408071680, 74468782080, -2230518850560, 81262621440000, -2999630643609600, 125381910682828800, -5464949027586048000, 258986473607083622400, -12924791918438400000000, 688106822684149835366400 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..360

FORMULA

E.g.f.: (1 + 5*Series_Reversion(G(x)))^(1/5), where G(x) = ((1+5*x)^(2/5) - (1-5*x)^(2/5))/4  = x + Sum_{n>=1} x^(2*n+1)/(2*n+1)! * Product_{k=0..n-1} (10*k+3)*(10*k+8).

E.g.f. A(x) satisfies:

(1) A(x)^5 + A(-x)^5 = 2.

(2) A(x)^2 - A(-x)^2 = 4*x.

(3) x = (A(x)^2 - (2 - A(x)^5)^(2/5))/4.

(4) A(x) = B(x^2) + x/B(x^2), where B(x^2) = (A(x) + A(-x))/2.

a(n) ~ (-1)^(n+1) * 2^(8*n/5-3/10) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 15 2014

EXAMPLE

E.g.f.: A(x) = 1 + x - 4*x^2/2! + 12*x^3/3! - 120*x^4/4! + 1080*x^5/5! - 14400*x^6/6! + 241920*x^7/7! - 4233600*x^8/8! + 103783680*x^9/9! +...

where

A(x)^2 = 1 + 2*x - 6*x^2/2! - 48*x^4/4! + 1440*x^6/6! + 1088640*x^8/8! + 500048640*x^10/10! + 254062448640*x^12/12! +...

A(x)^5 = 1 + 5*x - 120*x^3/3! + 720*x^5/5! + 302400*x^7/7! + 96163200*x^9/9! + 37362124800*x^11/11! + 17236393574400*x^13/13! +...

Thus the coefficients of odd powers of x in A(x)^2 equal zero:

[1, 2, -6, 0, -48, 0, 1440, 0, 1088640, 0, 500048640, 0, ...],

while the coefficients of even powers of x in A(x)^5 equal zero:

[1, 5, 0, -120, 0, 720, 0, 302400, 0, 96163200, 0, 37362124800, 0, ...],

after a few initial terms.

EXPLICIT FORMULA.

Let G(x) = ((1+5*x)^(2/5) - (1-5*x)^(2/5))/4, which begins

G(x) = x + 24*x^3/3! + 5616*x^5/5! + 3616704*x^7/7! + 4535346816*x^9/9! + 9360955828224*x^11/11! +...+ [Product_{k=0..n-1} (10*k+3)*(10*k+8)]*x^(2*n+1)/(2*n+1)! +...

then (A(x)^5 - 1)/5 = Series_Reversion(G(x)).

PROG

(PARI) /* Explicit formula: */

{a(n)=local(A, X=x+x^2*O(x^n), G=((1+5*X)^(2/5) - (1-5*X)^(2/5))/4);

A=(1 + 5*serreverse(G))^(1/5); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) /* Formula using series expansion: */

{a(n)=local(A, G=x + sum(m=1, n\2+1, x^(2*m+1)/(2*m+1)!*prod(k=0, m-1, (10*k+3)*(10*k+8)) +x^2*O(x^n)));

A=(1 + 5*serreverse(G))^(1/5); n!*polcoeff(A, n)}

for(n=0, 25, print1(a(n), ", "))

(PARI) /* Alternating zero coefficients in A(x)^2 and A(x)^5: */

{a(n)=local(A=[1, 1], E=1, M); for(i=1, n, A=concat(A, 0); M=#A;

E=sum(m=0, M-1, A[m+1]*x^m/m!)+x*O(x^M);

A[M]=if(M%2==0, -(M-1)!*Vec(E^2/2)[M], -(M-1)!*Vec(E^5/5)[M])); A[n+1]}

for(n=0, 25, print1(a(n), ", "))

CROSSREFS

Cf. A249787 (dual), A249785, A249786, A249789.

Sequence in context: A155174 A053491 A285451 * A032323 A331905 A053551

Adjacent sequences:  A249785 A249786 A249787 * A249789 A249790 A249791

KEYWORD

sign

AUTHOR

Paul D. Hanna, Nov 15 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 15:39 EST 2020. Contains 338906 sequences. (Running on oeis4.)