The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249788 E.g.f. A(x) satisfies: (A(x)^2 - 4*x)^5 = (2 - A(x)^5)^2. 6
 1, 1, -4, 12, -120, 1080, -14400, 241920, -4233600, 103783680, -2408071680, 74468782080, -2230518850560, 81262621440000, -2999630643609600, 125381910682828800, -5464949027586048000, 258986473607083622400, -12924791918438400000000, 688106822684149835366400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..360 FORMULA E.g.f.: (1 + 5*Series_Reversion(G(x)))^(1/5), where G(x) = ((1+5*x)^(2/5) - (1-5*x)^(2/5))/4  = x + Sum_{n>=1} x^(2*n+1)/(2*n+1)! * Product_{k=0..n-1} (10*k+3)*(10*k+8). E.g.f. A(x) satisfies: (1) A(x)^5 + A(-x)^5 = 2. (2) A(x)^2 - A(-x)^2 = 4*x. (3) x = (A(x)^2 - (2 - A(x)^5)^(2/5))/4. (4) A(x) = B(x^2) + x/B(x^2), where B(x^2) = (A(x) + A(-x))/2. a(n) ~ (-1)^(n+1) * 2^(8*n/5-3/10) * n^(n-1) / exp(n). - Vaclav Kotesovec, Nov 15 2014 EXAMPLE E.g.f.: A(x) = 1 + x - 4*x^2/2! + 12*x^3/3! - 120*x^4/4! + 1080*x^5/5! - 14400*x^6/6! + 241920*x^7/7! - 4233600*x^8/8! + 103783680*x^9/9! +... where A(x)^2 = 1 + 2*x - 6*x^2/2! - 48*x^4/4! + 1440*x^6/6! + 1088640*x^8/8! + 500048640*x^10/10! + 254062448640*x^12/12! +... A(x)^5 = 1 + 5*x - 120*x^3/3! + 720*x^5/5! + 302400*x^7/7! + 96163200*x^9/9! + 37362124800*x^11/11! + 17236393574400*x^13/13! +... Thus the coefficients of odd powers of x in A(x)^2 equal zero: [1, 2, -6, 0, -48, 0, 1440, 0, 1088640, 0, 500048640, 0, ...], while the coefficients of even powers of x in A(x)^5 equal zero: [1, 5, 0, -120, 0, 720, 0, 302400, 0, 96163200, 0, 37362124800, 0, ...], after a few initial terms. EXPLICIT FORMULA. Let G(x) = ((1+5*x)^(2/5) - (1-5*x)^(2/5))/4, which begins G(x) = x + 24*x^3/3! + 5616*x^5/5! + 3616704*x^7/7! + 4535346816*x^9/9! + 9360955828224*x^11/11! +...+ [Product_{k=0..n-1} (10*k+3)*(10*k+8)]*x^(2*n+1)/(2*n+1)! +... then (A(x)^5 - 1)/5 = Series_Reversion(G(x)). PROG (PARI) /* Explicit formula: */ {a(n)=local(A, X=x+x^2*O(x^n), G=((1+5*X)^(2/5) - (1-5*X)^(2/5))/4); A=(1 + 5*serreverse(G))^(1/5); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* Formula using series expansion: */ {a(n)=local(A, G=x + sum(m=1, n\2+1, x^(2*m+1)/(2*m+1)!*prod(k=0, m-1, (10*k+3)*(10*k+8)) +x^2*O(x^n))); A=(1 + 5*serreverse(G))^(1/5); n!*polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) (PARI) /* Alternating zero coefficients in A(x)^2 and A(x)^5: */ {a(n)=local(A=[1, 1], E=1, M); for(i=1, n, A=concat(A, 0); M=#A; E=sum(m=0, M-1, A[m+1]*x^m/m!)+x*O(x^M); A[M]=if(M%2==0, -(M-1)!*Vec(E^2/2)[M], -(M-1)!*Vec(E^5/5)[M])); A[n+1]} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A249787 (dual), A249785, A249786, A249789. Sequence in context: A155174 A053491 A285451 * A032323 A331905 A053551 Adjacent sequences:  A249785 A249786 A249787 * A249789 A249790 A249791 KEYWORD sign AUTHOR Paul D. Hanna, Nov 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:39 EST 2020. Contains 338906 sequences. (Running on oeis4.)