The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301420 Sums of positive coefficients in generalized Chebyshev polynomials of the first kind, for a family of 5 data. 6
 1, 5, 31, 205, 1376, 9251, 62210, 418361, 2813485, 18920751, 127242501, 855708865, 5754662616, 38700243965, 260260067876, 1750255192001, 11770508100345, 79156948982921, 532332378421395, 3579947998967501, 24075236064574376 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Re-express the Girard-Waring formulae to yield the mean powers in terms of the mean symmetric polynomials in the data values. Then for a family of 5 data, the sum of the positive coefficients in these polynomials is a(n). a(n+1)/a(n) approaches 1/(2^(1/5)-1). (For a family of 2 data, the coefficients of these polynomials give the Chebyshev polynomials of the first kind.) See extended comment in A301417. LINKS Gregory Gerard Wojnar, Table of n, a(n) for n = 1..65 G. G. Wojnar, D. S. Wojnar, and L. Q. Brin, Universal peculiar linear mean relationships in all polynomials, arXiv:1706.08381 [math.GM], 2017. See Table GW.n=5 p. 23. FORMULA G.f.: (-x*(x+1)^4+1)/(x^6+4*x^5+5*x^4-5*x^2-6*x+1); this denominator equals (1-x)*(2-(x+1)^5) (conjectured). a(n+14) = 7*a(n+13) - a(n+12) - 6*a(n+11) + 2*a(n+10) - a(n+9) + 4*a(n+8) + a(n+7) + 4*a(n+5) + 2*a(n+4) - a(n+3) - 5*a(n+2) - 4*a(n+1) - a(n) (conjectured). PROG (PARI) lista(5, nn) \\ use pari script file in A301417; Michel Marcus, Apr 21 2018 CROSSREFS Cf. A302764, A024537, A195350, A301417, A301421, A301424. Sequence in context: A288688 A002469 A296032 * A092636 A178792 A007197 Adjacent sequences:  A301417 A301418 A301419 * A301421 A301422 A301423 KEYWORD nonn AUTHOR Gregory Gerard Wojnar, Mar 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 06:46 EDT 2020. Contains 336209 sequences. (Running on oeis4.)