login
A301423
Numbers k such that !k/(k-1) is prime, where !k = A000166(k) is the subfactorial of k.
3
4, 5, 6, 11, 15, 44, 66, 168, 575, 1713
OFFSET
1,1
COMMENTS
Also numbers k such that A000255(k-2) is prime.
The corresponding primes are 3, 11, 53, 1468457, 34361893981, 22742406079421034331584846001936724930824184898296683, ...
a(11) > 35000. - Robert Price, Apr 14 2018
MATHEMATICA
Select[Range[2, 100], PrimeQ[Subfactorial[#]/(#-1)] &]
PROG
(PARI) isok(n) = (n != 1) && isprime(n!*sum(k=0, n, (-1)^k/k!)/(n-1)); \\ Michel Marcus, Mar 24 2018
CROSSREFS
Sequence in context: A076138 A050037 A113005 * A072623 A006144 A047429
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, Mar 20 2018
STATUS
approved