login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A337038
a(n) = exp(-1/2) * Sum_{k>=0} (2*k - 1)^n / (2^k * k!).
7
1, 0, 2, 4, 20, 96, 552, 3536, 25104, 194816, 1637408, 14792768, 142761280, 1464117760, 15886137984, 181667507456, 2182268117248, 27456279388160, 360872502280704, 4943580063237120, 70437638474568704, 1041911242274562048, 15972832382065977344, 253388070573020401664
OFFSET
0,3
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = (1 - 2*x + x*A(x/(1 - 2*x))) / (1 - x - 2*x^2).
G.f.: (1/(1 + x)) * Sum_{k>=0} (x/(1 + x))^k / Product_{j=1..k} (1 - 2*j*x/(1 + x)).
E.g.f.: exp((exp(2*x) - 1) / 2 - x).
a(0) = 1; a(n) = Sum_{k=1..n-1} binomial(n-1,k) * 2^k * a(n-k-1).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A004211(k).
a(n) ~ 2^(n - 1/2) * n^(n - 1/2) * exp(n/LambertW(2*n) - n - 1/2) / (sqrt(1 + LambertW(2*n)) * LambertW(2*n)^(n - 1/2)). - Vaclav Kotesovec, Jun 26 2022
MAPLE
E:= exp((exp(2*x)-1)/2-x):
S:= series(E, x, 31):
seq(coeff(S, x, i)*i!, i=0..30); # Robert Israel, Aug 26 2020
MATHEMATICA
nmax = 23; CoefficientList[Series[Exp[(Exp[2 x] - 1)/2 - x], {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k] 2^k a[n - k - 1], {k, 1, n - 1}]; Table[a[n], {n, 0, 23}]
Table[Sum[(-1)^(n - k) Binomial[n, k] 2^k BellB[k, 1/2], {k, 0, n}], {n, 0, 23}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 12 2020
STATUS
approved