login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058006
Alternating factorials: 0! - 1! + 2! - ... + (-1)^n n!
16
1, 0, 2, -4, 20, -100, 620, -4420, 35900, -326980, 3301820, -36614980, 442386620, -5784634180, 81393657020, -1226280710980, 19696509177020, -335990918918980, 6066382786809020, -115578717622022980, 2317323290554617020, -48773618881154822980
OFFSET
0,3
COMMENTS
From Harry Richman, Aug 13 2024: (Start)
Euler argued this sequence converges to 0.596347... (A073003 = Gompertz's constant); see Lagarias Section 2.5.
This sequence converges in the p-adic topology, for every prime number p. (End)
LINKS
Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, Bull. Amer. Math. Soc., Vol. 50, No. 4 (2013), pp. 527-628; preprint, arXiv:1303.1856 [math.NT], 2013.
Eric Weisstein's MathWorld, Incomplete Gamma Function.
FORMULA
a(n) = (-1)^n n! + a(n-1) = A005165(n)(-1)^n + 1.
a(n) = -(n-1)*a(n-1) + n*a(n-2), n>0.
E.g.f.: d/dx ((GAMMA(0,1)-GAMMA(0,1+x))*exp(1+x)). - Max Alekseyev, Jul 05 2010
G.f.: G(0)/(1-x), where G(k)= 1 - (2*k + 1)*x/( 1 - 2*x*(k+1)/(2*x*(k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
0 = a(n)*(-a(n+1) + a(n+3)) + a(n+1)*(2*a(n+1) - 2*a(n+2) -a(n+3)) + a(n+2)*(a(n+2)) if n>=-1. - Michael Somos, Jan 28 2014
a(n) = exp(1)*Gamma(0,1) + (-1)^n*exp(1)*(n+1)!*Gamma(-n-1,1), where Gamma(a,x) is the upper incomplete Gamma function. - Vladimir Reshetnikov, Oct 29 2015
EXAMPLE
a(5) = 0!-1!+2!-3!+4!-5! = 1-1+2-6+24-120 = -100.
G.f. = 1 + 2*x^2 - 4*x^3 + 20*x^4 - 100*x^5 + 620*x^6 - 4420*x^7 + 35900*x^8 + ...
MATHEMATICA
a[ n_] := Sum[ (-1)^k k!, {k, 0, n}]; (* Michael Somos, Jan 28 2014 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-1)^k * k!)}; /* Michael Somos, Jan 28 2014 */
(Haskell)
a058006 n = a058006_list !! n
a058006_list = scanl1 (+) a133942_list
-- Reinhard Zumkeller, Mar 02 2014
CROSSREFS
Cf. A000142, A003422, A005165, A153229 (absolute values), A136580.
Partial sums of A133942.
Sequence in context: A108879 A341855 A337038 * A153229 A325617 A013329
KEYWORD
easy,sign
AUTHOR
Henry Bottomley, Nov 13 2000
EXTENSIONS
Corrections and more information from Michael Somos, Feb 19 2003
STATUS
approved