OFFSET
0,4
COMMENTS
Row sums give A081057.
LINKS
Reinhard Zumkeller, Rows n = 0..120 of table, flattened
Peter McCalla, Asamoah Nkwanta, Catalan and Motzkin Integral Representations, arXiv:1901.07092 [math.NT], 2019.
FORMULA
T(n,m) = Fibonacci(n-m+1)*Fibonacci(m+1)*binomial(n,m).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
2, 2, 2;
3, 6, 6, 3;
5, 12, 24, 12, 5;
8, 25, 60, 60, 25, 8;
13, 48, 150, 180, 150, 48, 13;
21, 91, 336, 525, 525, 336, 91, 21;
34, 168, 728, 1344, 1750, 1344, 728, 168, 34;
55, 306, 1512, 3276, 5040, 5040, 3276, 1512, 306, 55;
89, 550, 3060, 7560, 13650, 16128, 13650, 7560, 3060, 550, 89;
...
MAPLE
f:= n-> combinat[fibonacci](n+1):
T:= (n, k)-> binomial(n, k)*f(k)*f(n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Apr 26 2023
MATHEMATICA
Clear[t, n, m] t[n_, m_] := Fibonacci[(n - m + 1)]*Fibonacci[(m + 1)]*Binomial[n, m]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
PROG
(Haskell)
a109906 n k = a109906_tabl !! n !! k
a109906_row n = a109906_tabl !! n
a109906_tabl = zipWith (zipWith (*)) a058071_tabl a007318_tabl
-- Reinhard Zumkeller, Aug 15 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula and Gary W. Adamson, Aug 24 2008
EXTENSIONS
Offset changed by Reinhard Zumkeller, Aug 15 2013
STATUS
approved